My Project
Data Structures | Macros | Functions
kbuckets.h File Reference
#include "polys/monomials/ring.h"
#include "polys/templates/p_Procs.h"

Go to the source code of this file.

Data Structures

class  kBucket
 

Macros

#define MAX_BUCKET   14
 Bucket definition (should be no one elses business, though) More...
 

Functions

kBucket_pt kBucketCreate (const ring r)
 Creation/Destruction of buckets. More...
 
void kBucketDestroy (kBucket_pt *bucket)
 
void kBucketDeleteAndDestroy (kBucket_pt *bucket)
 
void kBucketInit (kBucket_pt bucket, poly p, int length)
 
void kBucketClear (kBucket_pt bucket, poly *p, int *length)
 
poly kBucketClear (kBucket_pt bucket)
 
int kBucketCanonicalize (kBucket_pt bucket)
 Canonicalizes Bpoly, i.e. converts polys of buckets into one poly in one bucket: Returns number of bucket into which it is canonicalized. More...
 
void kBucketNormalize (kBucket_pt bucket)
 apply n_Normalize to all coefficients More...
 
poly kBucketExtractLm (kBucket_pt bucket)
 
void kBucketSetLm (kBucket_pt bucket, poly lm)
 
void kBucketAdjust (kBucket_pt bucket, int i)
 Bucket number i from bucket is out of length sync, resync. More...
 
number kBucketPolyRed (kBucket_pt bucket, poly p, int l, poly spNoether)
 
void kBucketTakeOutComp (kBucket_pt bucket, long comp, poly *p, int *l)
 
void kBucket_Mult_n (kBucket_pt bucket, number n)
 Multiply Bucket by number ,i.e. Bpoly == n*Bpoly. More...
 
poly kBucket_ExtractLarger (kBucket_pt bucket, poly q, poly append)
 Extract all monomials of bucket which are larger than q Append those to append, and return last monomial of append. More...
 
void kBucket_Add_q (kBucket_pt bucket, poly q, int *lq)
 Add to Bucket a poly ,i.e. Bpoly == Bpoly + q. More...
 
poly kBucket_ExtractLarger_Add_q (kBucket_pt bucket, poly append, poly q, int *lq)
 
void kBucket_Minus_m_Mult_p (kBucket_pt bucket, poly m, poly p, int *l, poly spNother=NULL)
 Bpoly == Bpoly - m*p; where m is a monom Does not destroy p and m (TODO: rename into kBucket_Minus_mm_Mult_pp!?) assume (*l <= 0 || pLength(p) == *l) More...
 
void kBucket_Plus_mm_Mult_pp (kBucket_pt bucket, poly m, poly p, int l)
 Bpoly == Bpoly + m*p; where m is a monom Does not destroy p and m assume (l <= 0 || pLength(p) == l) More...
 
void kBucketShallowCopyDelete (kBucket_pt bucket, ring new_tailRing, omBin new_tailBin, pShallowCopyDeleteProc p_shallow_copy_delete)
 For changing the ring of the Bpoly to new_tailBin. More...
 
BOOLEAN kbTest (kBucket_pt bucket)
 Tests. More...
 
poly kBucketGetLm (kBucket_pt bucket, p_kBucketSetLm_Proc_Ptr _p_kBucketSetLm)
 
poly kBucketGetLm (kBucket_pt bucket)
 
poly kBucketExtractLmOfBucket (kBucket_pt bucket, int i)
 
void kBucketSimpleContent (kBucket_pt bucket)
 
BOOLEAN kBucketIsCleared (kBucket_pt bucket)
 
int ksCheckCoeff (number *a, number *b, const coeffs r)
 

Data Structure Documentation

◆ kBucket

class kBucket

Definition at line 178 of file kbuckets.h.

Data Fields
ring bucket_ring
int l
poly p

Macro Definition Documentation

◆ MAX_BUCKET

#define MAX_BUCKET   14

Bucket definition (should be no one elses business, though)

Definition at line 175 of file kbuckets.h.

Function Documentation

◆ kbTest()

BOOLEAN kbTest ( kBucket_pt  bucket)

Tests.

Definition at line 197 of file kbuckets.cc.

198 {
199  return TRUE;
200 }
#define TRUE
Definition: auxiliary.h:100

◆ kBucket_Add_q()

void kBucket_Add_q ( kBucket_pt  bucket,
poly  q,
int *  l 
)

Add to Bucket a poly ,i.e. Bpoly == Bpoly + q.

Add to Bucket a poly ,i.e. Bpoly == Bpoly + q.

Definition at line 660 of file kbuckets.cc.

661 {
662  if (q == NULL) return;
663  assume(*l <= 0 || pLength(q) == *l);
664 
665  int i, l1;
666  ring r = bucket->bucket_ring;
667 
668  if (*l <= 0)
669  {
670  l1 = pLength(q);
671  *l = l1;
672  }
673  else
674  l1 = *l;
675 
676  kBucketMergeLm(bucket);
677  kbTest(bucket);
678  i = pLogLength(l1);
679 
680  while (bucket->buckets[i] != NULL)
681  {
682  //MULTIPLY_BUCKET(bucket,i);
683  #ifdef USE_COEF_BUCKETS
684  if (bucket->coef[i]!=NULL)
685  {
686  q = p_Plus_mm_Mult_qq(q, bucket->coef[i], bucket->buckets[i],
687  l1, bucket->buckets_length[i], r);
688  p_Delete(&bucket->coef[i],r);
689  p_Delete(&bucket->buckets[i],r);
690  }
691  else
692  q = p_Add_q(q, bucket->buckets[i],
693  l1, bucket->buckets_length[i], r);
694  #else
695  q = p_Add_q(q, bucket->buckets[i],
696  l1, bucket->buckets_length[i], r);
697  #endif
698  bucket->buckets[i] = NULL;
699  bucket->buckets_length[i] = 0;
700  i = pLogLength(l1);
701  assume(i<= MAX_BUCKET);
702  assume(bucket->buckets_used<= MAX_BUCKET);
703  }
704 
705  kbTest(bucket);
706  bucket->buckets[i] = q;
707  bucket->buckets_length[i]=l1;
708  if (i >= bucket->buckets_used)
709  bucket->buckets_used = i;
710  else
711  kBucketAdjustBucketsUsed(bucket);
712  kbTest(bucket);
713 }
int l
Definition: cfEzgcd.cc:100
int i
Definition: cfEzgcd.cc:132
BOOLEAN kbTest(kBucket_pt bucket)
Tests.
Definition: kbuckets.cc:197
static unsigned int pLogLength(unsigned int l)
Definition: kbuckets.cc:71
ring bucket_ring
Definition: kbuckets.h:192
#define MAX_BUCKET
Bucket definition (should be no one elses business, though)
Definition: kbuckets.h:175
#define assume(x)
Definition: mod2.h:389
#define NULL
Definition: omList.c:12
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:938
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:903
static unsigned pLength(poly a)
Definition: p_polys.h:191
static poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, const ring r)
Definition: p_polys.h:1185

◆ kBucket_ExtractLarger()

poly kBucket_ExtractLarger ( kBucket_pt  bucket,
poly  q,
poly  append 
)

Extract all monomials of bucket which are larger than q Append those to append, and return last monomial of append.

Definition at line 1010 of file kbuckets.cc.

1011 {
1012  if (q == NULL) return append;
1013  poly lm;
1014  loop
1015  {
1016  lm = kBucketGetLm(bucket);
1017  if (lm == NULL) return append;
1018  if (p_LmCmp(lm, q, bucket->bucket_ring) == 1)
1019  {
1020  lm = kBucketExtractLm(bucket);
1021  pNext(append) = lm;
1022  pIter(append);
1023  }
1024  else
1025  {
1026  return append;
1027  }
1028  }
1029 }
CFFList append(const CFFList &Inputlist, const CFFactor &TheFactor)
poly kBucketExtractLm(kBucket_pt bucket)
Definition: kbuckets.cc:511
const poly kBucketGetLm(kBucket_pt bucket)
Definition: kbuckets.cc:506
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1582
#define loop
Definition: structs.h:75

◆ kBucket_ExtractLarger_Add_q()

poly kBucket_ExtractLarger_Add_q ( kBucket_pt  bucket,
poly  append,
poly  q,
int *  lq 
)
inline

Definition at line 122 of file kbuckets.h.

123 {
124  append = kBucket_ExtractLarger(bucket, q, append);
125  kBucket_Add_q(bucket, q, lq);
126  return append;
127 }
void kBucket_Add_q(kBucket_pt bucket, poly q, int *lq)
Add to Bucket a poly ,i.e. Bpoly == Bpoly + q.
Definition: kbuckets.cc:660
poly kBucket_ExtractLarger(kBucket_pt bucket, poly q, poly append)
Extract all monomials of bucket which are larger than q Append those to append, and return last monom...
Definition: kbuckets.cc:1010
Definition: lq.h:40

◆ kBucket_Minus_m_Mult_p()

void kBucket_Minus_m_Mult_p ( kBucket_pt  bucket,
poly  m,
poly  p,
int *  l,
poly  spNoether 
)

Bpoly == Bpoly - m*p; where m is a monom Does not destroy p and m (TODO: rename into kBucket_Minus_mm_Mult_pp!?) assume (*l <= 0 || pLength(p) == *l)

Bpoly == Bpoly - m*p; where m is a monom Does not destroy p and m (TODO: rename into kBucket_Minus_mm_Mult_pp!?) assume (*l <= 0 || pLength(p) == *l)

Definition at line 722 of file kbuckets.cc.

724 {
725  assume(*l <= 0 || pLength(p) == *l);
726  int i, l1;
727  poly p1 = p;
728  ring r = bucket->bucket_ring;
729 
730  if (*l <= 0)
731  {
732  l1 = pLength(p1);
733  *l = l1;
734  }
735  else
736  l1 = *l;
737 
738  if (m == NULL || p == NULL) return;
739 
740 #ifndef HAVE_PSEUDO_BUCKETS
741  kBucketMergeLm(bucket);
742  kbTest(bucket);
743  i = pLogLength(l1);
744 
745 #if defined(HAVE_PLURAL)
746  if ((rField_is_Ring(r) && !(rField_is_Domain(r)))
747  ||(rIsPluralRing(r)))
748  {
749  pSetCoeff0(m, n_InpNeg(pGetCoeff(m),r->cf));
750  p1=r->p_Procs->pp_mm_Mult(p,m,r);
751  pSetCoeff0(m, n_InpNeg(pGetCoeff(m),r->cf));
752  l1=pLength(p1);
753  i = pLogLength(l1);
754  }
755  else
756 #endif
757  {
758  if ((i <= bucket->buckets_used) && (bucket->buckets[i] != NULL))
759  {
760  assume(pLength(bucket->buckets[i])==(unsigned)bucket->buckets_length[i]);
761 //#ifdef USE_COEF_BUCKETS
762 // if(bucket->coef[i]!=NULL)
763 // {
764 // poly mult=p_Mult_mm(bucket->coef[i],m,r);
765 // bucket->coef[i]=NULL;
766 // p1 = p_Minus_mm_Mult_qq(bucket->buckets[i], mult, p1,
767 // bucket->buckets_length[i], l1,
768 // spNoether, r);
769 // }
770 // else
771 //#endif
772  MULTIPLY_BUCKET(bucket,i);
773  p1 = p_Minus_mm_Mult_qq(bucket->buckets[i], m, p1,
774  bucket->buckets_length[i], l1,
775  spNoether, r);
776  l1 = bucket->buckets_length[i];
777  bucket->buckets[i] = NULL;
778  bucket->buckets_length[i] = 0;
779  i = pLogLength(l1);
780  }
781  else
782  {
783  pSetCoeff0(m, n_InpNeg(pGetCoeff(m),r->cf));
784  if (spNoether != NULL)
785  {
786  l1 = -1;
787  p1 = r->p_Procs->pp_Mult_mm_Noether(p1, m, spNoether, l1, r);
788  i = pLogLength(l1);
789  }
790  else
791  {
792  p1 = r->p_Procs->pp_mm_Mult(p1, m, r);
793  }
794  pSetCoeff0(m, n_InpNeg(pGetCoeff(m),r->cf));
795  }
796  }
797 
798  while (bucket->buckets[i] != NULL)
799  {
800  //kbTest(bucket);
801  MULTIPLY_BUCKET(bucket,i);
802  p1 = p_Add_q(p1, bucket->buckets[i],
803  l1, bucket->buckets_length[i], r);
804  bucket->buckets[i] = NULL;
805  bucket->buckets_length[i] = 0;
806  i = pLogLength(l1);
807  }
808 
809  bucket->buckets[i] = p1;
810  bucket->buckets_length[i]=l1;
811  if (i >= bucket->buckets_used)
812  bucket->buckets_used = i;
813  else
814  kBucketAdjustBucketsUsed(bucket);
815 #else // HAVE_PSEUDO_BUCKETS
816  bucket->p = p_Minus_mm_Mult_qq(bucket->p, m, p,
817  bucket->l, l1,
818  spNoether, r);
819 #endif
820 }
int m
Definition: cfEzgcd.cc:128
int p
Definition: cfModGcd.cc:4078
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:557
#define MULTIPLY_BUCKET(B, I)
Definition: kbuckets.cc:43
int l
Definition: kbuckets.h:183
poly p
Definition: kbuckets.h:182
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define pSetCoeff0(p, n)
Definition: monomials.h:59
static poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
Definition: p_polys.h:1072
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:488
#define rField_is_Ring(R)
Definition: ring.h:486

◆ kBucket_Mult_n()

void kBucket_Mult_n ( kBucket_pt  bucket,
number  n 
)

Multiply Bucket by number ,i.e. Bpoly == n*Bpoly.

Definition at line 598 of file kbuckets.cc.

599 {
600 #ifndef HAVE_PSEUDO_BUCKETS
601  kbTest(bucket);
602  ring r=bucket->bucket_ring;
603  int i;
604 
605  for (i=0; i<= bucket->buckets_used; i++)
606  {
607  if (bucket->buckets[i] != NULL)
608  {
609 #ifdef USE_COEF_BUCKETS
610  if (i<coef_start)
611  bucket->buckets[i] = __p_Mult_nn(bucket->buckets[i], n, r);
612  /* Frank Seelisch on March 11, 2010:
613  This looks a bit strange: The following "if" is indented
614  like the previous line of code. But coded as it is,
615  it should actually be two spaces less indented.
616  Question: Should the following "if" also only be
617  performed when "(i<coef_start)" is true?
618  For the time being, I leave it as it is. */
619  if (rField_is_Ring(r) && !(rField_is_Domain(r)))
620  {
621  bucket->buckets_length[i] = pLength(bucket->buckets[i]);
622  kBucketAdjust(bucket, i);
623  }
624  else
625  if (bucket->coef[i]!=NULL)
626  {
627  bucket->coef[i] = __p_Mult_nn(bucket->coef[i],n,r);
628  }
629  else
630  {
631  bucket->coef[i] = p_NSet(n_Copy(n,r),r);
632  }
633 #else
634  bucket->buckets[i] = __p_Mult_nn(bucket->buckets[i], n, r);
635 #endif
636  }
637  }
638  if (rField_is_Ring(r) && !(rField_is_Domain(r)))
639  {
640  for (i=0; i<= bucket->buckets_used; i++)
641  {
642  if (bucket->buckets[i] != NULL)
643  {
644  bucket->buckets_length[i] = pLength(bucket->buckets[i]);
645  kBucketAdjust(bucket, i);
646  }
647  }
648  }
649  kbTest(bucket);
650 #else
651  bucket->p = __p_Mult_nn(bucket->p, n, bucket->bucket_ring);
652 #endif
653 }
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
void kBucketAdjust(kBucket_pt bucket, int i)
Bucket number i from bucket is out of length sync, resync.
Definition: kbuckets.cc:565
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition: p_polys.cc:1469
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:973

◆ kBucket_Plus_mm_Mult_pp()

void kBucket_Plus_mm_Mult_pp ( kBucket_pt  bucket,
poly  m,
poly  p,
int  l 
)

Bpoly == Bpoly + m*p; where m is a monom Does not destroy p and m assume (l <= 0 || pLength(p) == l)

Definition at line 827 of file kbuckets.cc.

828 {
829  assume((!rIsPluralRing(bucket->bucket_ring))||p_IsConstant(m, bucket->bucket_ring));
830  assume(l <= 0 || pLength(p) == (unsigned)l);
831  int i, l1;
832  poly p1 = p;
833  ring r = bucket->bucket_ring;
834 
835  if (m == NULL || p == NULL) return;
836 
837  if (l <= 0)
838  {
839  l1 = pLength(p1);
840  l = l1;
841  }
842  else
843  l1 = l;
844 
845  kBucketMergeLm(bucket);
846  kbTest(bucket);
847  i = pLogLength(l1);
848  #ifdef USE_COEF_BUCKETS
849  number n=n_Init(1,r->cf);
850  #endif
851  if (i <= bucket->buckets_used && bucket->buckets[i] != NULL)
852  {
853  //if (FALSE){
854  #ifdef USE_COEF_BUCKETS
855  if ((bucket->coef[i]!=NULL) &&(i>=coef_start))
856  {
857  number orig_coef=p_GetCoeff(bucket->coef[i],r);
858  //we take ownership:
859  p_SetCoeff0(bucket->coef[i],n_Init(0,r),r);
860  number add_coef=n_Copy(p_GetCoeff(m,r),r);
861  number gcd=n_Gcd(add_coef, orig_coef,r);
862 
863  if (!(n_IsOne(gcd,r)))
864  {
865  number orig_coef2=n_ExactDiv(orig_coef,gcd,r);
866  number add_coef2=n_ExactDiv(add_coef, gcd,r);
867  n_Delete(&orig_coef,r);
868  n_Delete(&add_coef,r);
869  orig_coef=orig_coef2;
870  add_coef=add_coef2;
871 
872  //p_Mult_nn(bucket->buckets[i], orig_coef,r);
873  n_Delete(&n,r);
874  n=gcd;
875  }
876 
877  //assume(n_IsOne(n,r));
878  number backup=p_GetCoeff(m,r);
879 
880  p_SetCoeff0(m,add_coef,r);
881  bucket->buckets[i]=__p_Mult_nn(bucket->buckets[i],orig_coef,r);
882 
883  n_Delete(&orig_coef,r);
884  p_Delete(&bucket->coef[i],r);
885 
886  p1 = p_Plus_mm_Mult_qq(bucket->buckets[i], m, p1,
887  bucket->buckets_length[i], l1, r);
888  l1=bucket->buckets_length[i];
889  bucket->buckets[i]=NULL;
890  bucket->buckets_length[i] = 0;
891  i = pLogLength(l1);
892  assume(l1==pLength(p1));
893 
894  p_SetCoeff(m,backup,r); //deletes add_coef
895  }
896  else
897  #endif
898  {
899  MULTIPLY_BUCKET(bucket,i);
900  p1 = p_Plus_mm_Mult_qq(bucket->buckets[i], m, p1,
901  bucket->buckets_length[i], l1, r);
902  l1 = bucket->buckets_length[i];
903  bucket->buckets[i] = NULL;
904  bucket->buckets_length[i] = 0;
905  i = pLogLength(l1);
906  }
907  }
908  else
909  {
910  #ifdef USE_COEF_BUCKETS
911  number swap_n=p_GetCoeff(m,r);
912 
913  assume(n_IsOne(n,r));
914  p_SetCoeff0(m,n,r);
915  n=swap_n;
916  //p_SetCoeff0(n, swap_n, r);
917  //p_GetCoeff0(n, swap_n,r);
918  #endif
919  p1 = r->p_Procs->pp_Mult_mm(p1, m, r);
920  #ifdef USE_COEF_BUCKETS
921  //m may not be changed
922  p_SetCoeff(m,n_Copy(n,r),r);
923  #endif
924  }
925 
926  while ((bucket->buckets[i] != NULL) && (p1!=NULL))
927  {
928  assume(i!=0);
929  #ifdef USE_COEF_BUCKETS
930  if ((bucket->coef[i]!=NULL) &&(i>=coef_start))
931  {
932  number orig_coef=p_GetCoeff(bucket->coef[i],r);
933  //we take ownership:
934  p_SetCoeff0(bucket->coef[i],n_Init(0,r),r);
935  number add_coef=n_Copy(n,r);
936  number gcd=n_Gcd(add_coef, orig_coef,r);
937 
938  if (!(n_IsOne(gcd,r)))
939  {
940  number orig_coef2=n_ExactDiv(orig_coef,gcd,r);
941  number add_coef2=n_ExactDiv(add_coef, gcd,r);
942  n_Delete(&orig_coef,r);
943  n_Delete(&n,r);
944  n_Delete(&add_coef,r);
945  orig_coef=orig_coef2;
946  add_coef=add_coef2;
947  //p_Mult_nn(bucket->buckets[i], orig_coef,r);
948  n=gcd;
949  }
950  //assume(n_IsOne(n,r));
951  bucket->buckets[i]=__p_Mult_nn(bucket->buckets[i],orig_coef,r);
952  p1=__p_Mult_nn(p1,add_coef,r);
953 
954  p1 = p_Add_q(p1, bucket->buckets[i],r);
955  l1=pLength(p1);
956 
957  bucket->buckets[i]=NULL;
958  n_Delete(&orig_coef,r);
959  p_Delete(&bucket->coef[i],r);
960  //l1=bucket->buckets_length[i];
961  assume(l1==pLength(p1));
962  }
963  else
964  #endif
965  {
966  //don't do that, pull out gcd
967  #ifdef USE_COEF_BUCKETS
968  if(!(n_IsOne(n,r)))
969  {
970  p1=__p_Mult_nn(p1, n, r);
971  n_Delete(&n,r);
972  n=n_Init(1,r);
973  }
974  #endif
975  MULTIPLY_BUCKET(bucket,i);
976  p1 = p_Add_q(p1, bucket->buckets[i],
977  l1, bucket->buckets_length[i], r);
978  bucket->buckets[i] = NULL;
979  bucket->buckets_length[i] = 0;
980  }
981  i = pLogLength(l1);
982  }
983 
984  bucket->buckets[i] = p1;
985 #ifdef USE_COEF_BUCKETS
986  assume(bucket->coef[i]==NULL);
987 
988  if (!(n_IsOne(n,r)))
989  {
990  bucket->coef[i]=p_NSet(n,r);
991  }
992  else
993  {
994  bucket->coef[i]=NULL;
995  n_Delete(&n,r);
996  }
997 
998  if (p1==NULL)
999  p_Delete(&bucket->coef[i],r);
1000 #endif
1001  bucket->buckets_length[i]=l1;
1002  if (i > bucket->buckets_used)
1003  bucket->buckets_used = i;
1004  else
1005  kBucketAdjustBucketsUsed(bucket);
1006 
1007  kbTest(bucket);
1008 }
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition: coeffs.h:664
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:622
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:468
#define p_SetCoeff0(p, n, r)
Definition: monomials.h:60
#define p_GetCoeff(p, r)
Definition: monomials.h:50
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:414
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:2005
int gcd(int a, int b)
Definition: walkSupport.cc:836

◆ kBucketAdjust()

void kBucketAdjust ( kBucket_pt  bucket,
int  i 
)

Bucket number i from bucket is out of length sync, resync.

Definition at line 565 of file kbuckets.cc.

565  {
566 
567  MULTIPLY_BUCKET(bucket,i);
568 
569  int l1 = bucket->buckets_length[i];
570  poly p1 = bucket->buckets[i];
571  bucket->buckets[i] = NULL;
572  bucket->buckets_length[i] = 0;
573  i = pLogLength(l1);
574 
575  while (bucket->buckets[i] != NULL)
576  {
577  //kbTest(bucket);
578  MULTIPLY_BUCKET(bucket,i);
579  p1 = p_Add_q(p1, bucket->buckets[i],
580  l1, bucket->buckets_length[i], bucket->bucket_ring);
581  bucket->buckets[i] = NULL;
582  bucket->buckets_length[i] = 0;
583  i = pLogLength(l1);
584  }
585 
586  bucket->buckets[i] = p1;
587  bucket->buckets_length[i]=l1;
588  if (i >= bucket->buckets_used)
589  bucket->buckets_used = i;
590  else
591  kBucketAdjustBucketsUsed(bucket);
592 }

◆ kBucketCanonicalize()

int kBucketCanonicalize ( kBucket_pt  bucket)

Canonicalizes Bpoly, i.e. converts polys of buckets into one poly in one bucket: Returns number of bucket into which it is canonicalized.

◆ kBucketClear() [1/2]

poly kBucketClear ( kBucket_pt  bucket)
inline

Definition at line 42 of file kbuckets.h.

43 {
44  int dummy;
45  poly p;
46  kBucketClear(bucket, &p, &dummy);
47  return p;
48 }
void kBucketClear(kBucket_pt bucket, poly *p, int *length)
Definition: kbuckets.cc:521

◆ kBucketClear() [2/2]

void kBucketClear ( kBucket_pt  bucket,
poly *  p,
int *  length 
)

Definition at line 521 of file kbuckets.cc.

522 {
523  assume(pLength(bucket->p) == bucket->l);
524  *p = bucket->p;
525  *length = bucket->l;
526  bucket->p = NULL;
527  bucket->l = 0;
528 }
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257

◆ kBucketCreate()

kBucket_pt kBucketCreate ( const ring  r)

Creation/Destruction of buckets.

Definition at line 209 of file kbuckets.cc.

210 {
211  assume(bucket_ring != NULL);
213  bucket->bucket_ring = bucket_ring;
214  return bucket;
215 }
STATIC_VAR omBin kBucket_bin
Definition: kbuckets.cc:45
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
kBucket * kBucket_pt
Definition: ring.h:24

◆ kBucketDeleteAndDestroy()

void kBucketDeleteAndDestroy ( kBucket_pt bucket)

Definition at line 223 of file kbuckets.cc.

224 {
225  kBucket_pt bucket = *bucket_pt;
226  kbTest(bucket);
227  int i;
228  for (i=0; i<= bucket->buckets_used; i++)
229  {
230  p_Delete(&(bucket->buckets[i]), bucket->bucket_ring);
231 #ifdef USE_COEF_BUCKETS
232  p_Delete(&(bucket->coef[i]), bucket->bucket_ring);
233 #endif
234  }
235  omFreeBin(bucket, kBucket_bin);
236  *bucket_pt = NULL;
237 }
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259

◆ kBucketDestroy()

void kBucketDestroy ( kBucket_pt bucket)

Definition at line 216 of file kbuckets.cc.

217 {
218  omFreeBin(*bucket_pt, kBucket_bin);
219  *bucket_pt = NULL;
220 }

◆ kBucketExtractLm()

poly kBucketExtractLm ( kBucket_pt  bucket)
inline

Definition at line 231 of file kbuckets.h.

232 {
233  poly lm = kBucketGetLm(bucket);
234  #ifdef HAVE_COEF_BUCKETS
235  assume(bucket->coef[0]==NULL);
236  #endif
237  bucket->buckets[0] = NULL;
238  bucket->buckets_length[0] = 0;
239 
240  return lm;
241 }
poly kBucketGetLm(kBucket_pt bucket, p_kBucketSetLm_Proc_Ptr _p_kBucketSetLm)
Definition: kbuckets.h:208

◆ kBucketExtractLmOfBucket()

poly kBucketExtractLmOfBucket ( kBucket_pt  bucket,
int  i 
)

Definition at line 1382 of file kbuckets.cc.

1383 {
1384  assume(bucket->buckets[i]!=NULL);
1385 
1386  poly p=bucket->buckets[i];
1387  bucket->buckets_length[i]--;
1388 #ifdef USE_COEF_BUCKETS
1389  ring r=bucket->bucket_ring;
1390  if (bucket->coef[i]!=NULL)
1391  {
1392  poly next=pNext(p);
1393  if (next==NULL)
1394  {
1395  MULTIPLY_BUCKET(bucket,i);
1396  p=bucket->buckets[i];
1397  bucket->buckets[i]=NULL;
1398  return p;
1399  }
1400  else
1401  {
1402  bucket->buckets[i]=next;
1403  number c=p_GetCoeff(bucket->coef[i],r);
1404  pNext(p)=NULL;
1405  p=__p_Mult_nn(p,c,r);
1406  assume(p!=NULL);
1407  return p;
1408  }
1409  }
1410  else
1411 #endif
1412  {
1413  bucket->buckets[i]=pNext(bucket->buckets[i]);
1414  pNext(p)=NULL;
1415  assume(p!=NULL);
1416  return p;
1417  }
1418 }
ListNode * next
Definition: janet.h:31

◆ kBucketGetLm() [1/2]

poly kBucketGetLm ( kBucket_pt  bucket)
inline

Definition at line 226 of file kbuckets.h.

227 {
228  return kBucketGetLm(bucket, bucket->bucket_ring->p_Procs->p_kBucketSetLm); // TODO: needs ring :(
229 }

◆ kBucketGetLm() [2/2]

poly kBucketGetLm ( kBucket_pt  bucket,
p_kBucketSetLm_Proc_Ptr  _p_kBucketSetLm 
)
inline

Definition at line 208 of file kbuckets.h.

209 {
210 #ifdef HAVE_COEF_BUCKETS
211  assume(bucket->coef[0]==NULL);
212 #endif
213 
214  poly& lead = bucket->buckets[0];
215 
216  if (lead == NULL)
217  _p_kBucketSetLm(bucket);
218 
219 #ifdef HAVE_COEF_BUCKETS
220  assume(bucket->coef[0]==NULL);
221 #endif
222 
223  return lead;
224 }

◆ kBucketInit()

void kBucketInit ( kBucket_pt  bucket,
poly  p,
int  length 
)

Definition at line 493 of file kbuckets.cc.

494 {
495  int i;
496 
497  assume(bucket != NULL);
498  assume(length <= 0 || length == pLength(lm));
499 
500  bucket->p = lm;
501  if (length <= 0) bucket->l = pLength(lm);
502  else bucket->l = length;
503 
504 }

◆ kBucketIsCleared()

BOOLEAN kBucketIsCleared ( kBucket_pt  bucket)

◆ kBucketNormalize()

void kBucketNormalize ( kBucket_pt  bucket)

apply n_Normalize to all coefficients

◆ kBucketPolyRed()

number kBucketPolyRed ( kBucket_pt  bucket,
poly  p,
int  l,
poly  spNoether 
)

Definition at line 1085 of file kbuckets.cc.

1088 {
1089  ring r=bucket->bucket_ring;
1090  assume((!rIsPluralRing(r))||p_LmEqual(p1,kBucketGetLm(bucket), r));
1091  assume(p1 != NULL &&
1092  p_DivisibleBy(p1, kBucketGetLm(bucket), r));
1093  assume(pLength(p1) == (unsigned) l1);
1094 
1095  poly a1 = pNext(p1), lm = kBucketExtractLm(bucket);
1096  BOOLEAN reset_vec=FALSE;
1097  number rn;
1098 
1099  /* we shall reduce bucket=bn*lm+... by p1=an*t+a1 where t=lm(p1)
1100  and an,bn shall be defined further down only if lc(p1)!=1
1101  we already know: an|bn and t|lm */
1102  if(a1==NULL)
1103  {
1104  p_LmDelete(&lm, r);
1105  return n_Init(1,r->cf);
1106  }
1107 
1108  if (! n_IsOne(pGetCoeff(p1),r->cf))
1109  {
1110  number an = pGetCoeff(p1), bn = pGetCoeff(lm);
1111 //StringSetS("##### an = "); nWrite(an); PrintS(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
1112 //StringSetS("##### bn = "); nWrite(bn); PrintS(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
1113  /* ksCheckCoeff: divide out gcd from an and bn: */
1114  int ct = ksCheckCoeff(&an, &bn,r->cf);
1115  /* the previous command returns ct=0 or ct=2 iff an!=1
1116  note: an is now 1 or -1 */
1117 
1118  /* setup factor for p1 which cancels leading terms */
1119  p_SetCoeff(lm, bn, r);
1120  if ((ct == 0) || (ct == 2))
1121  {
1122  /* next line used to be here before but is WRONG:
1123  kBucket_Mult_n(bucket, an);
1124  its use would result in a wrong sign for the tail of bucket
1125  in the reduction */
1126 
1127  /* correct factor for cancelation by changing sign if an=-1 */
1128  if (rField_is_Ring(r))
1129  lm = __p_Mult_nn(lm, an, r);
1130  else
1131  kBucket_Mult_n(bucket, an);
1132  }
1133  rn = an;
1134  }
1135  else
1136  {
1137  rn = n_Init(1,r->cf);
1138  }
1139 
1140  if (p_GetComp(p1, r) != p_GetComp(lm, r))
1141  {
1142  p_SetCompP(a1, p_GetComp(lm, r), r);
1143  reset_vec = TRUE;
1144  p_SetComp(lm, p_GetComp(p1, r), r);
1145  p_Setm(lm, r);
1146  }
1147 
1148  p_ExpVectorSub(lm, p1, r);
1149  l1--;
1150 
1151  assume((unsigned)l1==pLength(a1));
1152 
1153 #ifdef HAVE_SHIFTBBA
1154  poly lmRight;
1155  poly lm_org;
1156  if (r->isLPring)
1157  {
1158  int firstBlock = p_mFirstVblock(p1, r);
1159  lm_org=lm;
1160  k_SplitFrame(lm, lmRight, si_max(firstBlock, 1), r);
1161  }
1162 #endif
1163 #if 0
1164  BOOLEAN backuped=FALSE;
1165  number coef;
1166  //@Viktor, don't ignore coefficients on monomials
1167  if(l1==1) {
1168 
1169  //if (rField_is_Q(r)) {
1170  //avoid this for function fields, as gcds are expensive at the moment
1171 
1172 
1173  coef=p_GetCoeff(a1,r);
1174  lm=p_Mult_nn(lm, coef, r);
1175  p_SetCoeff0(a1, n_Init(1,r), r);
1176  backuped=TRUE;
1177  //WARNING: not thread_safe
1178  //deletes coef as side effect
1179  //}
1180  }
1181 #endif
1182 
1183 #ifdef HAVE_SHIFTBBA
1184  if (r->isLPring)
1185  {
1186  poly tmp=r->p_Procs->pp_Mult_mm(a1, lmRight, r);
1187  kBucket_Minus_m_Mult_p(bucket, lm,tmp, &l1, spNoether);
1188  p_Delete(&tmp,r);
1189  p_LmDelete(&lmRight,r);
1190  p_LmDelete(lm_org,r);
1191  }
1192  else
1193 #endif
1194  {
1195  kBucket_Minus_m_Mult_p(bucket, lm, a1, &l1, spNoether);
1196  }
1197 
1198 #if 0
1199  if (backuped)
1200  p_SetCoeff0(a1,coef,r);
1201 #endif
1202 
1203  p_LmDelete(&lm, r);
1204  if (reset_vec) p_SetCompP(a1, 0, r);
1205  kbTest(bucket);
1206  return rn;
1207 }
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define FALSE
Definition: auxiliary.h:96
void kBucket_Minus_m_Mult_p(kBucket_pt bucket, poly m, poly p, int *l, poly spNoether)
Bpoly == Bpoly - m*p; where m is a monom Does not destroy p and m assume (*l <= 0 || pLength(p) == *l...
Definition: kbuckets.cc:722
void kBucket_Mult_n(kBucket_pt bucket, number n)
Multiply Bucket by number ,i.e. Bpoly == n*Bpoly.
Definition: kbuckets.cc:598
int ksCheckCoeff(number *a, number *b)
#define p_GetComp(p, r)
Definition: monomials.h:64
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:725
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1725
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:256
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:249
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1442
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:235
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1906
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:960
int p_mFirstVblock(poly p, const ring ri)
Definition: shiftop.cc:478
void k_SplitFrame(poly &m1, poly &m2, int at, const ring r)
Definition: shiftop.cc:600

◆ kBucketSetLm()

void kBucketSetLm ( kBucket_pt  bucket,
poly  lm 
)

◆ kBucketShallowCopyDelete()

void kBucketShallowCopyDelete ( kBucket_pt  bucket,
ring  new_tailRing,
omBin  new_tailBin,
pShallowCopyDeleteProc  p_shallow_copy_delete 
)

For changing the ring of the Bpoly to new_tailBin.

Definition at line 535 of file kbuckets.cc.

538 {
539 #ifndef HAVE_PSEUDO_BUCKETS
540  int i;
541 
542  kBucketCanonicalize(bucket);
543  for (i=0; i<= bucket->buckets_used; i++)
544  if (bucket->buckets[i] != NULL)
545  {
546  MULTIPLY_BUCKET(bucket,i);
547  bucket->buckets[i] = p_shallow_copy_delete(bucket->buckets[i],
548  bucket->bucket_ring,
549  new_tailRing,
550  new_tailBin);
551  }
552 #else
553  bucket->p = p_shallow_copy_delete(p,
554  bucket_ring,
555  new_tailRing,
556  new_tailBin);
557 #endif
558  bucket->bucket_ring = new_tailRing;
559 }
int kBucketCanonicalize(kBucket_pt bucket)
Canonicalizes Bpoly, i.e. converts polys of buckets into one poly in one bucket: Returns number of bu...

◆ kBucketSimpleContent()

void kBucketSimpleContent ( kBucket_pt  bucket)

Definition at line 1210 of file kbuckets.cc.

1211 {
1212  if (bucket->buckets[0]==NULL) return;
1213 
1214  ring r=bucket->bucket_ring;
1215  if (rField_is_Ring(r)) return;
1216 
1217  coeffs cf=r->cf;
1218  if (cf->cfSubringGcd==ndGcd) /* trivial gcd*/ return;
1219 
1220  number nn=pGetCoeff(bucket->buckets[0]);
1221  //if ((bucket->buckets_used==0)
1222  //&&(!n_IsOne(nn,cf)))
1223  //{
1224  // if (TEST_OPT_PROT) PrintS("@");
1225  // p_SetCoeff(bucket->buckets[0],n_Init(1,cf),r);
1226  // return;
1227  //}
1228 
1229  if (n_Size(nn,cf)<2) return;
1230 
1231  //kBucketAdjustBucketsUsed(bucket);
1232  number coef=n_Copy(nn,cf);
1233  // find an initial guess of a gcd
1234  for (int i=1; i<=bucket->buckets_used;i++)
1235  {
1236  if (bucket->buckets[i]!=NULL)
1237  {
1238  number t=p_InitContent(bucket->buckets[i],r);
1239  if (n_Size(t,cf)<2)
1240  {
1241  n_Delete(&t,cf);
1242  n_Delete(&coef,cf);
1243  return;
1244  }
1245  number t2=n_SubringGcd(coef,t,cf);
1246  n_Delete(&t,cf);
1247  n_Delete(&coef,cf);
1248  coef=t2;
1249  if (n_Size(coef,cf)<2) { n_Delete(&coef,cf);return;}
1250  }
1251  }
1252  // find the gcd
1253  for (int i=0; i<=bucket->buckets_used;i++)
1254  {
1255  if (bucket->buckets[i]!=NULL)
1256  {
1257  poly p=bucket->buckets[i];
1258  while(p!=NULL)
1259  {
1260  number t=n_SubringGcd(coef,pGetCoeff(p),cf);
1261  if (n_Size(t,cf)<2)
1262  {
1263  n_Delete(&t,cf);
1264  n_Delete(&coef,cf);
1265  return;
1266  }
1267  pIter(p);
1268  }
1269  }
1270  }
1271  // divided by the gcd
1272  if (TEST_OPT_PROT) PrintS("@");
1273  for (int i=bucket->buckets_used;i>=0;i--)
1274  {
1275  if (bucket->buckets[i]!=NULL)
1276  {
1277  poly p=bucket->buckets[i];
1278  while(p!=NULL)
1279  {
1280  number d = n_ExactDiv(pGetCoeff(p),coef,cf);
1281  p_SetCoeff(p,d,r);
1282  pIter(p);
1283  }
1284  }
1285  }
1286  n_Delete(&coef,cf);
1287 }
CanonicalForm cf
Definition: cfModGcd.cc:4083
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:570
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:666
The main handler for Singular numbers which are suitable for Singular polynomials.
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:192
#define TEST_OPT_PROT
Definition: options.h:104
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2700
void PrintS(const char *s)
Definition: reporter.cc:284

◆ kBucketTakeOutComp()

void kBucketTakeOutComp ( kBucket_pt  bucket,
long  comp,
poly *  p,
int *  l 
)

Definition at line 1044 of file kbuckets.cc.

1047 {
1048  poly p = NULL, q;
1049  int i, lp = 0, lq;
1050 
1051 #ifndef HAVE_PSEUDO_BUCKETS
1052  kBucketMergeLm(bucket);
1053  for (i=1; i<=bucket->buckets_used; i++)
1054  {
1055  if (bucket->buckets[i] != NULL)
1056  {
1057  MULTIPLY_BUCKET(bucket,i);
1058  p_TakeOutComp(&(bucket->buckets[i]), comp, &q, &lq, bucket->bucket_ring);
1059  if (q != NULL)
1060  {
1061  assume(pLength(q) == (unsigned)lq);
1062  bucket->buckets_length[i] -= lq;
1063  assume(pLength(bucket->buckets[i]) == (unsigned)bucket->buckets_length[i]);
1064  p = p_Add_q(p, q, lp, lq, bucket->bucket_ring);
1065  }
1066  }
1067  }
1068  kBucketAdjustBucketsUsed(bucket);
1069 #else
1070  p_TakeOutComp(&(bucket->p), comp, &p, &lp,bucket->bucket_ring);
1071  (bucket->l) -= lp;
1072 #endif
1073  *r_p = p;
1074  *l = lp;
1075 
1076  kbTest(bucket);
1077 }
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
Definition: p_polys.cc:3612

◆ ksCheckCoeff()

int ksCheckCoeff ( number *  a,
number *  b,
const coeffs  r 
)

Definition at line 1431 of file kbuckets.cc.

1432 {
1433  int c = 0;
1434  number an = *a, bn = *b;
1435  n_Test(an,r);
1436  n_Test(bn,r);
1437 
1438  number cn = n_SubringGcd(an, bn, r);
1439 
1440  if(n_IsOne(cn, r))
1441  {
1442  an = n_Copy(an, r);
1443  bn = n_Copy(bn, r);
1444  }
1445  else
1446  {
1447  an = n_ExactDiv(an, cn, r);
1448  bn = n_ExactDiv(bn, cn, r);
1449  }
1450  n_Delete(&cn, r);
1451  if (n_IsOne(an, r))
1452  {
1453  c = 1;
1454  }
1455  if (n_IsOne(bn, r))
1456  {
1457  c += 2;
1458  }
1459  *a = an;
1460  *b = bn;
1461  return c;
1462 }
CanonicalForm b
Definition: cfModGcd.cc:4103
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:712