
The Therion Book

Stacho Mudrák

Martin Budaj

Therion is copyrighted software. Distributed under the GNU General Public License.

Copyright c© 1999–2021 Stacho Mudrák, Martin Budaj

This book describes Therion 6.1.3 (2022-11-26).

Code contributions by Matěj Plch, Olly Betts, Marco Corvi, Vladimir Georgiev, Georg

Pacher and Dimitrios Zachariadis.

We owe thanks to Martin Sluka, Ladislav Blažek, Martin Heller, Wookey, Olly Betts and

all users for their feedback, support and suggestions.

Translations (%):

Language XTherion Map header Loch Translated by

bg 81 77 100 Alexander Yanev, Ivo Tachev, Vladimir Georgiev

ca – 80 – Evaristo Quiroga

cs 83 75 – Ladislav Blažek

de 97 74 – Roger Schuster, Georg Pacher, Benedikt Hallinger

el 80 69 – Stelios Zacharias

en[GB| US] 72 100 100 Stacho Mudrák, Olly Betts, Rodrigo Severo

es 100 79 – Roman Muñoz, Evaristo Quiroga

fr 99 79 – Eric Madelaine, Gilbert Fernandes

it 100 99 100 Marco Corvi, Francesco Bellamoli

mi – 71 – Kyle Davis, Bruce Mutton

pl – 71 – Krzysztof Dudziński

pt[BR| PT] 100 100 – Rodrigo Severo, Toni Cavalheiro

rs – 78 – Ivana Miskovic

ru 97 77 – Vasily V. Suhachev, Andrey Kozhenkov

sk 96 78 96 Stacho Mudrák

sl 100 80 96 Marko Zakrajsek

sq 80 69 – Fatos Katallozi

zh 81 71 – Zhang Yuan Hai, Duncan Collis

The cover picture shows survey sketch of Hrozný kameňolom Chamber in the Cave of

Dead Bats in Slovakia and the map of it produced by Therion.

Table of Contents

Introduction . 7

Why Therion? . 7

Features . 8

Software requirements 9

Installation . 9

Setting-up an environment 10

How does it work? 10

First run . 11

Creating data files 12

Basics . 12

Data types . 13

Coordinate systems 14

Magnetic declination 15

Data format . 15

‘encoding’ . 15

‘input’ . 16

‘survey’ . 16

‘centreline’ . 17

‘scrap’ . 21

‘point’ . 24

‘line’ . 27

‘area’ . 30

‘join’ . 31

‘equate’ . 32

‘map’ . 32

‘surface’ . 33

‘import’ . 34

‘grade’ . 35

‘revise’ . 35

Custom attributes 36

XTherion . 36

XTherion—text editor 37

XTherion—map editor 37

Additional tools 40

Keyboard and mouse shortcuts in the Map editor 41

Thinking in Therion 43

How to enter a centreline 43

How to draw maps 44

How to create models 45

Therion in depth 45

How the map is put together 45

Processing data 47

Configuration file 47

‘system’ . 47

‘encoding’ . 47

‘language’ . 47

‘cs’ . 47

‘sketch-warp’ 48

‘input’ . 48

‘source’ . 48

‘select’ . 49

‘unselect’ . 49

‘maps’ . 50

‘maps-offset’ . 50

‘log’ . 50

‘text’ . 50

‘layout’ . 50

‘lookup’ . 58

‘setup3d’ . 59

‘sketch-colors’ 59

‘export’ . 60

Running Therion 62

XTherion—compiler 64

What do we get 65

Information files 65

Log file . 65

XTherion . 65

SQL export . 65

Lists—caves, surveys, continuations 67

2D maps . 67

Maps for printing 67

Maps for GIS 68

Special-purpose maps 68

3D models . 68

Loch . 68

Changing layout of PDF maps 69

Page layout in the atlas mode 69

Page layout in the map mode 74

Customizing text labels 76

New map symbols 76

Point symbols 77

Line symbols 78

Area symbols 79

Special symbols 79
Appendix . 80

Compilation . 80

Installing the dependencies 80

Using CMake 81

Legacy approach: using make 82

Hacker’s guide 82

Environment variables 84

Initialization files 84

Therion . 84

XTherion . 89

Limitations . 89

Example data . 90

History . 91

Future . 93

General . 93

2D maps . 93

3D models . 93

XTherion . 93

Loch . 93

Labyrinth . 93

LET NO ONE IGNORANT OF GEOMETRY ENTER HERE

ageOMetRhtos Mhdeis eisitO
—alleged inscription over the entrance

of Plato’s Academy, th century BC

Introduction

Therion is a tool for cave surveying. Its purpose is to help

• archive survey data on a computer in a form as close to the original notes and sketches

as possible and retrieve them in a flexible and efficient way;

• draw a nice up-to-date plan or elevation map;

• create a realistic 3D model of the cave.

It runs on Unix, Linux, MacOS X and Win32 operating systems. Source code and Win-

dows installer are available on the Therion web page (https://therion.speleo.sk).

Therion is distributed under the GNU General Public License.

Why Therion?

In the 1990s we did a lot of caving and cave surveying. Some computer programs existed

which displayed survey shots and stations after loop closure and error elimination. These

were a great help, especially for large and complicated cave systems. We used the output

of one of them—TJIKPR—as a background layer with survey stations for hand-drawn

maps. After finishing a huge 166-page Atlas of the Cave of Dead Bats in early 1997, we

soon had a problem: we found new passages connecting between known passages and

surveyed them. After processing in TJIKPR, the new loops influenced the position of the

old surveys; most survey stations now had a slightly different position from before due to

the changed error distribution. So we could either draw the whole Atlas again, or accept

that the location of some places was not accurate—in the case of loops with a length of

approximately 1 km there were sometimes errors of about 10 m—and try to distort the

new passages to fit to old ones.

These problems remained when we tried to draw maps using some CAD programs in

1998 and 1999. It was always hard to add new surveys without adapting the old ones

to the newly calculated positions of survey stations in the whole cave. We found no

program that was able to draw an up-to-date complex map (i.e. not just survey shots

with LRUD envelope), in which the old parts are modified according to the most recent

known coordinates of survey stations.

In 1999 we began to think about creating our own program for map drawing. We knew

about programs which were perfectly suited for particular sub-tasks. There was META-

POST, a high level programming language for vector graphics description, Survex for

7

https://therion.speleo.sk
https://www.gnu.org/

excellent processing of survey shots, and TEX for typesetting the results. We only had to

glue them together. By Xmas 1999 we had a minimalistic version of Therion working for

the first time. This consisted only of about 32 kB of Perl scripts and METAPOST macros

but served the purpose of showing that our ideas were implementable.

During 2000–2001 we searched for the optimal format of the input data, programming

language, concept of interactive map editor and internal algorithms with the help of

Martin Sluka (Prague) and Martin Heller (Zürich). In 2002 we were able to introduce

the first really usable version of Therion, which met our requirements.

Features

Therion is a command-line application. It processes input files, which are—including 2D

maps—in text format, and creates files with 2D maps or 3D model as the output.

The syntax of input files is described in detail in later chapters. You may create these

files in an arbitrary plain text editor like ed or vi. They contain instructions for Therion,

e.g.

point 1303 1004 pillar

where point is a keyword for point symbol followed by its coordinates and a symbol type

specification.

Hand-editing of such files is not easy—especially when you draw maps, you need to think

in spatial (Cartesian coordinate) terms. Thus there is a special GUI for Therion called

XTherion. XTherion works as an advanced text editor, map editor (where maps are

drawn fully interactively) and compiler (which runs Therion on the data).

It may look quite complicated, but this approach has a lot of advantages:

• There is strict separation of data and visualization. The data files specify only where

the objects are, not what they look like. The visual representation is added by META-

POST in later phases of data processing. (It’s a very similar concept to XML data

representation.)

This makes it possible to change map symbols used without changing the input data,

or merge more maps created by different people in different styles into one map with

unified map symbols set.

2D maps are adapted for particular output scale (level of abstraction, non-linear scaling

of symbols and texts)

• All data is relative to survey station positions. If the coordinates of survey stations are

changed in the process of loop closure, then all relevant data is moved correspondingly,

so the map is always up-to-date.

• Therion is not dependent on particular operating system, character encoding or input

files editor; input files will remain human readable

8

• It’s possible to add new output formats

• 3D model is generated from 2D maps to get a realistic 3D model without entering too

much data

• although the support for WYSIWYG is limited, you get what you want

Software requirements

“A program should do one thing, and do it well.” (Ken Thompson) Therefore we use

some valuable external programs, which are related to the problems of typesetting and

data visualization. Therion can then do its task much better than if it were a standalone

application in which you could calibrate your printer or scanner and, with one click, send

e-mail with your data.

Therion needs:

• PROJ library.

• TEX distribution. Necessary only if you want to create 2D maps in PDF or SVG

format.

• Tcl/Tk with BWidget and optionally tkImg extension. It is only required for XTherion.

• LCDF Typetools if you want to use easy setup for custom fonts in PDF maps

• convert and identify utilities from ImageMagick distribution, if you want to use warping

of survey sketches.

• ghostscript if you want to create calibrated images from georeferenced PDF maps.

Windows installer includes all required packages with the exception of ghostscript. Read

the Appendix if you want to compile Therion yourself.

For displaying maps and models you may use any of the following programs:

• any PDF or SVG viewer displaying 2D maps;

• any GIS supporting DXF or shapefile formats for analyzing the maps;

• appropriate 3D viewer for models exported in other than default format;

• any SQL database client to process the exported database.

Installation

Installation from sources (therion-5.*.tar.gz package):

The source code is a primary Therion distribution. It needs to be compiled and installed

according to the instructions in the Appendix.

Installation on Windows:

Run the setup program and follow the instructions. It installs all the required dependen-

cies and creates shortcuts to XTherion and Therion Book.

9

Setting-up an environment

Therion reads settings from the initialization file. Default settings should work fine for

users using just latin characters1, standard TEX and METAPOST.

If you want to use your own fonts for latin or non-latin characters in PDF maps, edit the

initialization file. Instructions on how to do this are in the Appendix.

How does it work?

So, now it’s clear what Therion needs, let’s have a look at the way it interacts with all

these programs:

Therion

therion.mp

therion.tex

XTherion

Loch & other viewers

MetaPost

Plain base

makempx mpto

TEXdvitomp

Plain format

pdfTeX
Plain format

input data

PDF maps

info & log files

maps, models, DB

scanned sketches

DON’T PANIC! When your system is set-up correctly the majority of this is hidden from

the user and all necessary programs are run automatically by Therion.

For working with Therion it is enough to know that you have to create input data (best

done with XTherion), run Therion, and display the output files (3D model, map, log file)

in the appropriate program.

For those who want to understand more about it, here is a brief explanation of the above

flowchart. Program names are in roman font, data files in italics. Arrows show data flow

between programs. Temporary data files are not shown. The meaning of colours:

• black—Therion programs and macros (XTherion is written in Tcl/Tk, so it needs this

interpreter to run)

• red—TEX package

1 In the PDF map Therion renders most of the accented characters as a combination of accent and a
base character. Some obscure accents might be omitted. Precomposed accented letters are included
for Slovak and Czech languages.

10

• green—input files created by the user and output files created by Therion

Therion itself does the main task. It reads the input files, interprets them, finds closed

loops and distributes errors. Next it transforms all other data (e.g. 2D maps) according

to new stations position. Therion exports data for 2D maps in METAPOST format.

METAPOST gives the actual shape to abstract map symbols according to map symbol

definitions; it creates a lot of PostScript files with small fragments of the cave. These

are read back and converted to a PDF-like format, which forms input data for pdfTEX.

PdfTEX does all the typesetting and creates a PDF file of the cave map.

Therion also exports 3D models (full or centreline) in various formats.

Centreline may be exported for further processing in any SQL database.

First run

After explaining the basic principles of Therion it’s a good idea to try it on the example

data.

• Download the sample data from Therion web page and unpack it somewhere on your

computer’s hard drive.

• Run XTherion (under Unix and MacOS X by typing ‘xtherion’ in the command line,

under Windows there is a shortcut in the Start menu).

• Open the file ‘thconfig’ from the sample data directory in the ‘Compiler’ window of

XTherion

• Press ‘F9’ or ‘compile’ in the menu to run Therion on the data—you’ll get some mes-

sages from Therion, METAPOST and TEX.

• PDF maps and 3D models are created in the data directory.

Additionally, you may open survey data files (*.th) in the ‘Text editor’ window and map

data files (*.th2) in the ‘Map editor’ window of XTherion. Although the data format

may look confusing at first, it will be explained in the following chapters.

11

Only for you, children of doctrine

and learning, have we written this work.
Examine this book, ponder the meaning

we have dispersed in various places and
gathered again; what we have concealed

in one place we have disclosed in another,

that it may be understood by your wisdom. —Henricus C. Agrippa ab Nettesheym, 

Creating data files

Basics

The input files for Therion are in text format. There are a few rules about how such a

file should look:

• There are two kinds of commands. One-line commands and multi-line commands.

• A one-line command is terminated by an end of line character. The syntax of these is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

where arg1 ... argN are obligatory arguments, and pairs -option value are options,

which you may freely omit. Which arguments and options are available depends on

the particular command. An example may be

point 643.5 505.0 gradient -orientation 144.7

with three obligatory arguments and one optional option/value pair. Sometimes op-

tions have no or multiple values.

• Multi-line commands begin similarly to one line commands, but continue on subsequent

lines until explicit command termination. These lines may contain either data or

options, which are applied to subsequent data. If a data line starts with a word

reserved for an option, you have to insert ‘!’ in front of it. The syntax is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endcommand

Again, for better illustration, a real example follows:

line wall -id walltobereferenced

1174.0 744.5

1194.0 756.5 1192.5 757.5 1176.0 791.0

smooth off

1205.5 788.0 1195.5 832.5 1173.5 879.0

12

endline

This command line has one obligatory argument, a line type (passage wall in this

case), followed by one option. The next two lines contain data (coordinates of Bézier

curves to be drawn). The next line (“smooth off”) specifies an option which applies

to subsequent data (i.e. not for the whole line, unlike the option -id in the first line)

and the last line contains some more data.

• if the value of an option or argument contains spaces, you should enclose this value in

" " or []. If you want to put a double-quote " into text in " " you need to insert it

twice. Quotes are used for strings; brackets for numerical values and keywords.

• each line ending with a backslash (\) is considered to continue on the next line, as if

there was neither line-break nor backlash.

• everything that follows #, until the end of line—even inside a command—is considered

to be a comment, and is ignored.

• multiline comments inside comment ... endcomment block are allowed in data and

configuration files

Data types

Therion uses following data types:

• keyword . a sequence of A-Z, a-z, 0-9 and _-/ characters (not starting with ‘-’).

• ext keyword . keyword that can also contain +*.,’ characters, but not on the first

position.

• date . a date (or a time interval) specification in the format

YYYY[.MM.[DD[@HH[:MM[:SS[.SS]]]]]] [- YYYY[.MM[.DD[@HH[:MM[:SS[.SS]]]]]]]

or ‘-’ to leave a date unspecified.

• person . a person’s first name and surname separated by whitespace characters. Use

‘/’ to separate first name and surname if there are more names.

• string . a sequence of any characters. Strings may contain special tag <lang:XX> to

separate translations. In multilingual strings only the text between <lang:XX> (where

XX is the language selected in initialization or configuration file) and the next <lang:YY>

tag is displayed on the output. If no match is found, everything before any occurrence

of <lang:ZZ> tag is displayed.

• units . length units supported: meter[s], centimeter[s], inch[es], feet[s], yard[s] (also m,

cm, in, ft, yd). Angle units supported: degree[s], minute[s] (also deg, min), grad[s],

mil[s], percent[age] (clino only). A degree value may be entered in decimal notation

(x.y) or in a special notation for degrees, minutes and seconds (deg[:min[:sec]]).

13

Coordinate systems

Therion supports coordinate transformations in geodetic coordinate systems. You can

specify cs option in centreline, surface, import and layout objects and then enter

XY data in given system. You can also specify output cs in configuration file.

If you do not specify any cs in your dataset, it is assumed you are working in local

coordinate system, and no conversions are done. If you specify cs anywhere in the data,

you have to specify it for all location data (fix, origin in layout etc.).

cs applies to all subsequent location data until other cs is specified or until the end of

the current object, whichever comes first.

Following coordinate systems are supported:

• UTM1 – UTM60 . Universal Transverse Mercator in northern hemisphere and given zone,

WGS84 datum. Equivalent to EPSG:32601–EPSG:32660.

• UTM1N – UTM60N . same as UTM1 – UTM60

• UTM1S – UTM60S . UTM in southern hemisphere, WGS84 datum.

Equivalent to EPSG:32701–EPSG:32760.

• lat-long, long-lat . latitude (N positive, S negative) and longitude (E positive,

W negative) in given order in degrees (deg[:min[:sec]] allowed), WGS84 datum. Not

supported on output. Equivalent to EPSG:4326.

• EPSG:<number> . Most of EPSG coordinate systems. Almost every coordinate system

used worldwide has its own EPSG number. To find the number of your system, see

https://epsg.org.

• ESRI:<number> . Similar to EPSG, but ESRI standard.

• ETRS . European Terrestrial Reference System 1989 (ETRS89); long-lat order, not

supported on output. Equivalent to EPSG:4258.

• ETRS28 – ETRS37 . ETRS89 zones in UTM projection; east-north order. Equivalent to

EPSG:25828–EPSG:25837.

• JTSK, iJTSK . Czechoslovak S-JTSK system used since 1920s with south and west

axis (JTSK) and its modified version with axis pointing east and north and negative

numbers (iJTSK). JTSK is not supported on output (iJTSK is).

• JTSK03, iJTSK03 . new S-JTSK realisation introduced in Slovakia in 2011.

• OSGB:<H, N, O, S or T><A-Z except I> . British Ordnance Survey National Grid.

• S-MERC . the spherical Mercator projection, as used by various online mapping sites.

Equivalent to EPSG:3857.

14

https://epsg.org

Magnetic declination

Therion contains built-in IGRF2 Earth geomagnetic field model valid for period 1900–

2025. It is automatically used if the cave is located in space with a fix station using

any of the supported geodetic coordinate systems and in time with the centerlines date

command. The computed declination is listed in the LOG file for information.

If the user specified a declination in the centerline, that value takes precedence over

the automatic calculation.

Data format

The syntax of input files is explained in the description of individual commands. Studying

the example files distributed with Therion will help you understand. See also an example

in the Appendix.

Each of the following sections describes one Therion command using the following struc-

ture:

Description: notes concerning this command.

Syntax: schematic syntax description.

Context: specifies the context in which is this command allowed. The survey context

means that the command must be enclosed by survey ... endsurvey pair. The scrap

context means that the command must be enclosed within scrap ... endscrap pair.

Context all means that the command may be used anywhere.

Arguments: a list of the obligatory arguments with explanations.

Options: a list of the available options.

Command-like options: options for multi-line commands, which can be specified among

the data lines.

‘encoding’

Description: sets the encoding of input file. This allows the use of non-ASCII characters

in input files.

Syntax: encoding <encoding-name>

Context: It should be the very first command in the file.

2 See https://www.ngdc.noaa.gov/IAGA/vmod/

15

https://www.ngdc.noaa.gov/IAGA/vmod/

Arguments:

• <encoding-name> . to see a list of all the supported encoding names, run Therion

with --print-encodings option. ‘UTF-8’ (Unicode) and ‘ASCII’ (7 bit) encodings

are always supported.

‘input’

Description: inserts the contents of a file in place of the command. Default extension is

‘.th’ and may be omitted. For greatest portability use relative paths and Unix slashes

‘/’, not Windows backslashes ‘\’, as directory separators.

Syntax: input <file-name>

Context: all

Arguments:

• <file-name>

‘survey’

Description: Survey is the main data structure. Surveys may be nested—this allows a

hierarchical structure to be built. Usually some level of this hierarchical structure survey

represents caves, higher levels karst areas and lower levels e.g. passages.

Each survey has its own namespace specified by its <id> argument. Objects (like survey

stations or scraps; see below) which belong to a subsurvey of the current survey are

referenced as

<object-id>@<subsurvey-id>,

or, if there are more nesting levels

<object-id>@<subsubsurvey-id>.<subsurvey-id>.3

This means, that object identifiers must be unique only in the scope of one survey. For

instance, survey stations names can be the same if they are in different surveys. This

allows stations to be numbered from 0 in each survey or the joining of two caves into one

cave system without renaming survey stations.

Syntax: survey <id> [OPTIONS]

... other therion objects ...

endsurvey [<id>]

Context: none, survey

Arguments:

• <id> . survey identifier

3 Note: it’s not possible to reference any object from the higher-level surveys.

16

Options:

• namespace <on/off> . specify whether survey creates namespace (on by default)

• declination <specification> . set the default declination for all data objects in

this survey (which can be overridden by declination definitions in subsurveys). The

<specification> has three forms:

1. [] an empty string. This will reset the declination definition.

2. [<value> <units>] will set a single value (also for undated surveys).

3. [<date1> <value1> [<date2> <value2> ...] <units>] will set declination for

several dates. Then the declination of each shot will be set according to the date

specification of the data object. If you want to explicitly set the declination for undated

survey data, use ‘-’ instead of date.

If no declination is specified and some geodetic coordinate system is defined, the dec-

lination is automatically computed using built-in geomagnetic model.

N.B.: The declination is positive when the magnetic north is east of true north.

• person-rename <old name> <new name> . rename a person whose name has been

changed

• title <string> . description of the object

• entrance <station-name> . specifies the main entrance to the cave represented by

this survey. If not specified and there is exactly one station marked entrance in this

survey, it is considered to represent a cave also. This information is used for cave-list

export.

‘centreline’

Description: Survey data (centreline) specification. The syntax is borrowed from Survex

with minor modifications; the Survex manual may be useful as an additional reference

for the user. A synonym term ‘centerline’ may be used.

Syntax: centreline [OPTIONS]

date <date>

team <person> [<roles>]

explo-date <date>

explo-team <person>

instrument <quantity list> <description>

calibrate <quantity list> <zero error> [<scale>]

units <quantity list> [<factor>] <units>

sd <quantity list> <value> <units>

grade <grade list>

declination <value> <units>

17

grid-angle <value> <units>

infer <what> <on/off>

mark <type>

flags <shot flags>

station <station> <comment> [<flags>]

cs <coordinate system>

fix <station> [<x> <y> <z> [<std x> <std y> <std z>]]

equate <station list>

data <style> <readings order>

break

group

endgroup

walls <auto/on/off>

vthreshold <number> <units>

extend <spec> [<station> [<station>]]

station-names <prefix> <suffix>

...

[SURVEY DATA]

...

endcentreline

Context: none, survey

Options:

• id <ext_keyword> . id of the object

• author <date> <person> . author of the data and its creation date

• copyright <date> <string> . copyright date and name

• title <string> . description of the object

Command-like options:

• date <date> . survey date. If multiple dates are specified, a time interval is created.

• explo-date <date> . discovery date. If multiple dates are specified, a time interval

is created.

• team <person> [<roles>] . a survey team member. The first argument is his/her

name, the others describe the roles of the person in the team (optional—currently not

used). The following role keywords are supported: station, [back]length, [back]tape,

[back]compass, [back]bearing, [back]clino, [back]gradient, counter, depth, station, po-

sition, notes, pictures, pics, instruments (insts), assistant (dog).

• explo-team <person> . a discovery team member.

• instrument <quantity list> <description> . description of the instrument that

was used to survey the given quantities (same keywords as team person’s role)

18

• infer <what> <on/off> . ‘infer plumbs on’ tells the program to interpret gradients

±90 ◦ as UP/DOWN (this means no clino corrections are applied). ‘infer equates

on’ will case program to interpret shots with 0 length as equate commands (which

means that no tape corrections are applied)

• declination <value> <units> . sets the declination for subsequent shots

true bearing = measured bearing + declination.

The declination is positive when the magnetic north is east of true north. If no decli-

nation is specified, or the declination is reset (-), then a valid declination specification

is searched for in all surveys the data object is in. See declination option of survey

command.

• grid-angle <value> <units> . specifies the magnetic grid angle (declination against

grid north).

• sd <quantity list> <value> <units> . sets the standard deviation for the given

measurements. The Quantity list can contain the following keywords: length, tape,

bearing, compass, gradient, clino, counter, depth, x, y, z, position, easting, dx, nor-

thing, dy, altitude, dz.

• grade <grade list> . sets standard deviations according to the survey grade specifi-

cation (see grade command). All previously specified standard deviations or grades are

lost. If you want to change an SD, use the sd option after this command. If multiple

grades are specified, only the last one applies. You can specify grades only for position

or only for surveys. If you want to combine them, you must use them in one grade line.

• units <quantity list> [<factor>] <units> . set the units for given measurements

(same quantities as for sd).

• calibrate <quantity list> <zero error> [<scale>] . set the instrument calibra-

tion. The measured value is calculated using the following formula: measured value =

(read value− zero error)× scale. The supported quantities are the same as sd.

• break . can be used with interleaved data to separate two traverses

• mark [<station list>] <type> . set the type of named stations. <type> is one

of: fixed, painted and temporary (default). If there is no station list, all subsequent

stations are marked.

• flags <shot flags> . set flags for following shots. The supported flags are: surface

(for surface measurements), duplicate (for duplicated surveys), splay (for short side

legs that are hidden in maps and models by default). These are excluded from length

calculations.

All shots having one of the stations named either ‘.’ or ‘-’ are splay shots by default

(see also data command).

19

If flag is set to approx[imate], it is included to total length calculations, but also

displayed separately in survey statistics. It should be used for shots, that were not

surveyed properly and need to be resurveyed.

Also “not” is allowed before a flag.

• station <station> <comment> [<flags>] . set the station comment and its flags.

If "" is specified as a comment, it is ignored.

Supported flags: entrance, continuation, air-draught[:winter/summer], sink,

spring, doline, dig, arch, overhang. Also not is allowed before a flag, to remove

previously added flag.

You can also specify custom attributes to the station using attr flag followed by

attribute name and value. Example:

station 4 "pit to explore" continuation attr code "V"

If there is a passage, that was explored, but not surveyed yet, estimated explored length

of this passage can be added to the station with continuation flag. Just add explored

<explored-length> to the station flags. Explored lengths are a part of survey/cave

statistics, displayed separately. Example:

station 40 "ugly crollway" continuation explored 100m

• cs <coordinate system> . coordinate system for stations with fixed coordinates

• fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] . fix station coordi-

nates (with specified errors—only the units transformation, not calibration, is applied

to them).

• equate <station list> . set points that are equivalent

• data <style> <readings order> . set data style (normal, topofil, diving, cartesian,

cylpolar, dimensions, nosurvey) and readings order. Reading is one of the follow-

ing keywords: station, from, to, [back]tape/[back]length, [back]compass/[back]bearing,

[back]clino/[back]gradient, depth, fromdepth, todepth, depthchange, counter, from-

count, tocount, northing, easting, altitude, up/ceiling4, down/floor, left, right, ignore,

ignoreall.

See Survex manual for details.

For interleaved data both newline and direction keywords are supported. If backward

and forward compass or clino reading are given, the average of them is computed.

If one of the shot stations is named either ‘.’ or ‘-’, the shot has splay attribute set.

Dot should be used for shots ending on features inside passage, dash for shots ending on

passage walls, floor or ceiling. Although Therion makes no distinction between them

yet, it should be used to improve 3D modeling in the future.

• group
4 dimension may be specified as a pair [<from> <to>], meaning the size at the beginning and end of

the shot

20

• endgroup . group/endgroup pair enables the user to make temporary changes in

almost any setting (calibrate, units, sd, data, flags...)

• walls <auto/on/off> . turn on/off passage shape generation from LRUD data for

subsequent shots. If set auto, passage is generated only if there is no scrap referencing

given centreline.

• vthreshold <number> <units> . threshold for interpreting LRUD readings as left-

right-front-back reading perpendicular to the shot.

If passeges are horizontal (inclination < vthreshold), LR is perpendicular to the

shot and UD is vertical.

If passages are more or less vertical (inclination > vthreshold), even UD becomes

perpendicular to the shot – otherwise passages would not look very good. In the case

of vertical shots, UD is interpreted as north-south dimension from the station to allow

tube-like modelling of verticals.

• extend <spec> [<station> [<station>]] . control how the centerline is extended.

<spec> is one of the following

normal/reverse . extend given and following stations to the same/reverse direction

as previous station. If two stations are given—direction is applied only to given shot.

left/right . same as above, but direction is specified explicitly.

vertical . do not move station (shot) in X direction, use only Z component of the

shot

start . specify starting station (shot)

ignore . ignore specified station (shot), continue extended elevation with other station

(shot) if possible

hide . do not show specified station (shot) in extended elevation

If no stations are specified, <spec> is valid for following shots specified.

• station-names <prefix> <suffix> . adds given prefix/suffix to all survey stations

in the current centreline. Saves some typing.

‘scrap’

Description: Scrap is a piece of 2D map, which doesn’t contain overlapping passages

(i.e. all the passages may be drawn on the paper without overlapping). For small and

simple caves, the whole cave may belong to one scrap. In complicated systems, a scrap is

21

usually one chamber or one passage. Ideally, a scrap contains about 100 m of the cave.5

Each scrap is processed separately by METAPOST; scraps which are too large may exceed

METAPOST’s memory and cause errors.

Scrap consists of point, line and area map symbols. See chapter How the map is put

together for explanation how and in which order are they displayed.

Scrap border consists of lines with the -outline out or -outline in options (passage

walls have -outline out by default). These lines shouldn’t intersect—otherwise Therion

(METAPOST) can’t determine the interior of the scrap and METAPOST issues a warning

message “scrap outline intersects itself”.

Each scrap has its own local cartesian coordinate system, which usually corresponds with

the millimeter paper (if you measure the coordinates of map symbols by hand) or pixels

of the scanned image (if you use XTherion). Therion does the transformation from this

local coordinate system to the real coordinates using the positions of survey stations,

which are specified both in the scrap as point map symbols and in centreline data. If the

scrap doesn’t contain at least two survey stations with the -name reference, you have to

use the -scale option for calibrating the scrap. (This is usual for cross sections.)

The transformation consists of the following steps:

• Linear transformation (shifting, scaling and rotation) which ‘best’ fits stations drawn

in the scrap to real ones. ‘Best’ means that the sum of squared distances between cor-

responding stations before and after transformation is minimal. The result is displayed

red if debug option of the layout command is set on.

• Non-linear transformation of the scrap which (1) moves survey stations to their correct

position, (2) is continuous. Displayed blue in the debug mode.

• Non-linear transformation of the scrap which (1) moves joined points together, (2)

doesn’t move survey stations, (3) is continuous. Finally the position of curves’ control

points is adjusted to preserve smoothness. The result is final map.

Syntax: scrap <id> [OPTIONS]

... point, line and area commands ...

endscrap [<id>]

Context: none, survey

Arguments:

• <id> . scrap identifier

5 If necessary, scraps may be much smaller—just to display a few meters of the cave. When deciding
about scrap size please take into account the following: Using small scraps may take more time for
cartographer to optimize scrap joins. On the other hand smaller scraps will probably be less distorted
by map warping algorithms than larger scraps. Using too large scraps may exhaust METAPOST’s
memory if passage fills are frequently used and the map editor in XTherion is much less responsive
when editing huge scraps.

22

Options:

• projection <specification> . specifies the drawing projection. Each projection is

identified by a type and optionally by an index in the form type[:index]. The index

can be any keyword. The following projection types are supported:

1. none . no projection, used for cross sections or maps that are independent of survey

data (e.g. digitization of old maps where no centreline data are available). No index is

allowed for this projection.

2. plan . basic plan projection (default).

3. elevation . orthogonal projection (a.k.a. projected profile) which optionally takes

a view direction as an argument (e.g. [elevation 10] or [elevation 10 deg]).

4. extended . extended elevation (a.k.a. extended profile).

• scale <specification> . is used to pre-scale (convert coordinates from pixels to

meters) the scrap data. If scrap projection is none, this is the only transformation that

is done with coordinates. The <specification> has four forms:

1. <number> . <number> meters per drawing unit.

2. [<number> <length units>] . <number> <length units> per drawing unit.

3. [<num1> <num2> <length units>] . <num1> drawing units corresponds to <num2>

<length units> in reality.

4. [<num1> ... <num8> [<length units>]] . this is the most general format, where

you specify, in order, the x and y coordinates of two points in the scrap and two points

in reality. Optionally, you can also specify units for the coordinates of the ‘points in

reality’. This form allows you to apply both scaling and rotation to the scrap.

• cs <coordinate system> . assumes that (calibrated) local scrap coordinates are given

in specified coordinate system. It is useful for absolute placing of imported sketches

where no survey stations are specified.6

• stations <list of station names> . stations you want to plot to the scrap, but

which are not used for scrap transformation. You don’t have to specify (draw) them

with the point station command.

• sketch <filename> <x> <y> . underlying sketch bitmap specification (lower left cor-

ner coordinates).

• walls <on/off/auto> . specify if the scrap should be used in 3D model reconstruction

• flip (none)/horizontal/vertical . flips the scrap after scale transformation

• station-names <prefix> <suffix> . adds given prefix/suffix to all survey stations

in the current scrap. Saves some typing.

• author <date> <person> . author of the data and its creation date

6 If there are some survey stations in the scrap, the cs specification is ignored.

23

• copyright <date> <string> . copyright date and name

• title <string> . description of the object

‘point’

Description: Point is a command for drawing a point map symbol.

Syntax: point <x> <y> <type> [OPTIONS]

Context: scrap

Arguments:

• <x> and <y> are the drawing coordinates of an object.

• <type> determines the type of an object. The following types are supported:

special objects: dimensions7, section8, station9;

labels: altitude10, date11, height12, label, passage-height13, remark, station-

name14;

symbolic passage fills:15 bedrock, blocks, clay, debris, guano, ice, mudcrack, mud,

pebbles, raft, sand, snow, water;

speleothems: anastomosis, aragonite, cave-pearl, clay-tree, crystal, curtains,

curtain, disc-pillar, disc-stalactite, disc-stalagmite, disc-pillars, disc-

stalactites, disc-stalagmites, disk, flowstone, flute, gypsum-flower, gyp-

sum, helictites, helictite, karren, moonmilk, pendant, pillar-with-curtains,

pillars-with-curtains, pillar, popcorn, raft-cone, rimstone-dam, rimstone-

pool, scallop, soda-straw, stalactite-stalagmite, stalactites-stalagmites,

stalactite, stalactites, stalagmite, stalagmites, volcano, wall-calcite;

7 Use -value option to specify passage dimensions above/below centerline plane used while creating
3D model.

8 section is an anchor for placing the cross-section at this point. This symbol has no visual repre-
sentation. The cross section must be in the separate scrap with ‘none’ projection specified. You can
specify it through the -scrap option.

9 Survey station. For each scrap (with the exception of scraps in ‘none’ projection) at least one station
with station reference (-name option) has to be specified.

10 General altitude label. All altitudes are exported as a difference against grid Z origin (which is 0
by default). To display altitude on the passage wall, use altitude option for any line point of the
passage wall

11 Set date’s value with the -value option
12 Height of formations inside of the passage (like pit etc.); see below for details.
13 Height of the passage; see below for details.
14 If no text is specified, the name of the nearest station is used.
15 Unlike other point symbols, these are clipped by the scrap border. See the chapter How the map is

put together.

24

equipment: anchor, bridge, camp, fixed-ladder, gate, handrail, masonry, name-

plate, no-equipment, no-wheelchair, rope-ladder, rope, steps, traverse, via-

ferrata, walkway, wheelchair;

passage ends: breakdown-choke, clay-choke, continuation, entrance, flowstone-

choke, low-end, narrow-end;

others: air-draught16, altar, archeo-excavation, archeo-material, audio, bat,

bones, danger, dig, electric-light, ex-voto, extra17, gradient, human-bones,

ice-pillar, ice-stalactite, ice-stalagmite, map-connection18, paleo-material,

photo, root, seed-germination, sink, spring19, tree-trunk, u20, vegetable-debris,

water-drip, water-flow.

Options:

• subtype <keyword> . determines the object’s subtype. The following subtypes for

given types are supported:

station:21 temporary (default), painted, natural, fixed;

air-draught: winter, summer, undefined (default);

water-flow: permanent (default), intermittent, paleo.

The subtype may be specified also directly in <type> specification using ‘:’ as a

separator.22

Any subtype specification can be used with user defined type (u). In this case you need

also to define corresponding metapost symbol (see the chapter New map symbols).

• orientation/orient <number> . defines the orientation of the symbol. If not speci-

fied, it’s oriented to north. 0 ≤ number < 360.

• align . alignment of the symbol or text. The following values are accepted: center, c,

top, t, bottom, b, left, l, right, r, top-left, tl, top-right, tr, bottom-left, bl, bottom-right,

br.

• scale . symbol scale, can be: tiny (xs), small (s), normal (m), large (l), huge (xl)

or a numeric value. Normal is default. Named sizes scale by
√

2, so that xs ≡ 0.5,

s ≡ 0.707, m ≡ 1.0, l ≡ 1.414 and xl ≡ 2.0.

• place <bottom/default/top> . changes displaying order in the map.

16 Number of ticks is set according to -scale option
17 Additional morphing point. See -dist and -value options.
18 Virtual point, used to indicate connection between shifted maps (extended elevation, map offset).
19 Always use spring and sink symbols with a water-flow arrow.
20 For user defined point symbols.
21 if station subtype is not specified, Therion reads it from centreline, if it’s specified there
22 E.g. station:fixed

25

• clip <on/off> . specify whether a symbol is clipped by the scrap border. You cannot

specify this option for the following symbols: station, station-name, label, remark,

date, altitude, height, passage-height.

• dist <distance> . valid for extra points, specifies the distance to the nearest station

(or station specified using -from option. If not specified, appropriate value from LRUD

data is used.

• from <station> . valid for extra points, specifies reference station.

• visibility <on/off> . displays/hides the symbol.

• context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.23

• id <ext_keyword> . ID of the symbol.

Type-specific options:

• name <reference> . if the point type is station, this option gives the reference to the

real survey station.

• extend [prev[ious] <station>] . if the point type is station and scrap projection

is extended elevation, you can adjust the extension of the centreline using this option.

• scrap <reference> . if the point type is section, this is a reference to a cross-section

scrap.

• explored <length> . if the point type is continuation, you can specify length of pas-

sages explored but not surveyed yet. This value is afterwards displayed in survey/cave

statistics.

• text . text of the label, remark or continuation. It may contain following formatting

keywords:24

 . line break

<center>/<centre>, <left>, <right> . line alignment for multi-line labels. Ignored

if there is no
 tag.

<thsp> . thin space

<rm>, <it>, <bf>, <ss>, <si> . font switches

<rtl> and </rtl> . marks beginning and end of a right-to-left written text

23 Example: if you specify -context point air-draught to a label which displays the observation
date, the symbol-hide point air-draught command would hide both air-draught arrow and the
corresponding label.

24 For SVG output, only
, <thsp>, <it>, <bf>, <rm> and <lang:XX> keywords are taken into
account; all others are silently ignored.

26

<lang:XX> . creates multilingual label (see string type for detailed description)

<size:N> . specify the font size in points; N should be an integer between 1 and 127.6.1.0

<size:N%> . specify the font size as a percentage of the native font size of the given6.1.1

label; N should be between 1 and 999.25

<size:S> . specify the font size using predefined scales; S can be one of xs, s, m, l, 6.1.1

xl.

• value . value of height, passage-height, altitude, dimensions or date

height: according to the sign of the value (positive, negative or unsigned), this type of

symbol represents chimney height, pit depth or step height in general. The numeric

value can be optionally followed by ‘?’, if the value is presumed and units can be added

(e.g. -value [40? ft]).

passage-height: the following four forms of value are supported: +<number> (the height

of the ceiling), -<number> (the depth of the floor or water depth), <number> (the dis-

tance between floor and ceiling) and [+<number> -<number>] (the distance to ceiling

and distance to floor).

altitude: the value specified is the altitude difference from the nearest station. The

value will be set to 0 if defined as ‘-’, ‘.’, ‘nan’, ‘NAN’ or ‘NaN’. If the altitude value is

prefixed by ‘fix’ (e.g. -value [fix 1300]), this value is used as an absolute altitude.

The value can optionally be followed by length units.

dimensions: -value [<above> <below> [<units>]] specifies passage dimensions a-

bove/below centerline plane used in 3D model.

date: -value <date> sets the date for the date point.

‘line’

Description: Line is a command for drawing a line symbol on the map. Each line symbol

is oriented and its visualization may depend on its orientation (e.g. pitch edge ticks). The

general rule is that the free space is on the left, rock on the right. Examples: the lower

side of a pitch, higher side of a chimney and interior of a passage are on the left side of

pitch, chimney or wall symbols, respectively.

Syntax: line <type> [OPTIONS]

[OPTIONS]

...

[LINE DATA]

...

[OPTIONS]

25 For practical reasons, the values are currently used in the increments of 10, so both 46 and 53 are
interpreted as 50 % size.

27

...

[LINE DATA]

...

endline

Context: scrap

Arguments:

• <type> is a keyword that determines the type of line. The following types are sup-

ported:

passages: wall, contour, slope26, floor-step, pit, pitch (synonym of pit), ceiling-

step, chimney, overhang, ceiling-meander, floor-meander, low-ceiling, pit-

chimney;

passage fills: flowstone, moonmilk, rock-border27, rock-edge28, water-flow, abyss-

entrance, dripline, fault, gradient, joint, rimstone-dam, rimstone-pool;

equipment: fixed-ladder, handrail, rope, rope-ladder, steps, via-ferrata, walk-

way;

labels: label;

special: border, arrow, section29, survey30, map-connection31, u32.

Command-like options:

• subtype <keyword> . determines line subtype. The following subtypes are supported

for given types:

wall: invisible, bedrock (default), sand, clay, pebbles, debris, blocks, ice, un-

derlying, overlying, unsurveyed, presumed, pit33, flowstone, moonmilk;

border: visible (default), invisible, temporary, presumed;

water-flow: permanent (default), conjectural, intermittent;

26 Slope line marks upper border of the sloping area. It’s necessary to specify l-size in at least one
point. Gradient lines length and orientation is an average of specified l-sizes and orientations in
the nearest points. If there is no orientation specification, gradient marks are perpendicular to the
slope line.

27 Outer outline of large boulders. If the line is closed, it is filled with the background colour.
28 Inner edges of large boulders.
29 Line showing cross-section position. If both control points (red dots) of a Bézier curve (grey line)

are given then the section line (blue) is drawn up to the perpendicular projection (dotted) of the
first control point and from the projection (dotted) of the section control point. No section curve is
displayed.

30 Survey line is automatically drawn by Therion.
31 Used to indicate connection between maps (in offset, or the same points in extended elevation).
32 For user defined line symbols.
33 Usually open to surface.

28

survey: cave (default), surface (default if centreline has surface flag).

The subtype may be specified also directly in <type> specification using ‘:’ as a

separator.34

Any subtype specification can be used with user defined type (u). In this case you need

also to define corresponding metapost symbol (see the chapter New map symbols).

• [LINE DATA] specify either the coordinates of a line segment <x> <y>, or coordinates of

a Bézier curve arc <c1x> <c1y> <c2x> <c2y> <x> <y>, where c indicates the control

point.

• close <on/off/auto> . determines whether a line is closed or not

• mark <keyword> . is used to mark the point on the line (see join command).

• orientation/orient <number> . orientation of the symbols on the line. If not spec-

ified, it’s perpendicular to the line on its left side. 0 ≤ number < 360.

• outline <in/out/none> . determines whether the line serves as a border line for a

scrap. Default value is ‘out’ for walls, ‘none’ for all other lines. Use -outline in for

large pillars etc.

• reverse <on/off> . whether points are given in reverse order.

• size <number> . line width (left and right sizes are set to one half of this value)

• r-size <number> . size of the line to the right

• l-size <number> . same to the left. Required for slope type.

• smooth <on/off/auto> . whether the line is smooth at the given point. Auto is

default.

• scale . scale for labels, can be: tiny (xs), small (s), normal (m), large (l), huge (xl)

or a numeric value. Normal is default. Named sizes scale by
√

2, so that xs ≡ 0.5,

s ≡ 0.707, m ≡ 1.0, l ≡ 1.414 and xl ≡ 2.0. Absolute font sizes (in points) can be

assigned to named sizes using fonts-setup in the layout configuration section.

• adjust <horizontal/vertical> . shifts the line point to be aligned horizontally/ver-

tically with the previous point (or next point if there is no previous point). The result

is horizontal/vertical line segment). If all line points have this option, they are aligned

to the average y or x coordinate, respectively. This option is not allowed in the plan

projection.

• place <bottom/default/top> . changes displaying order in the map.

• clip <on/off> . specify whether a symbol is clipped by the scrap border.

• visibility <on/off> . displays/hides the symbol.

34 E.g. border:invisible

29

• context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.

Type-specific options:

• altitude <value> . can be specified only with the wall type. This option creates an

altitude label on the wall. All altitudes are exported as a difference against grid Z

origin (which is 0 by default). If the value is specified, it gives the altitude difference

of the point on the wall relative to the nearest station. The value will be set to 0 if

defined as ”-”, ”.”, ”nan”, ”NAN” or ”NaN”. The value can be prefixed by a keyword

“fix”, then no nearest station is taken into consideration; the absolute given value is

used instead. Units can follow the value. Examples: +4, [+4 m], [fix 1510 m].

• anchors <on/off> . this option can be specified only with the ‘rope’ line type.

• border <on/off> . this option can be specified only with the ‘slope’ symbol type. It

switches on/off the border line of the slope.

• direction <begin/end/both/none/point> . can be used only with the section type.

It indicates where to put a direction arrow on the section line. None is default.

• gradient <none/center/point> . can be used only with the contour type and indi-

cates where to put a gradient mark on the contour line. If there is no gradient speci-

fication, behaviour is symbol-set dependent (e.g. no tick in UIS, tick in the middle in

SKBB).

• head <begin/end/both/none> . can be used only with the arrow type and indicates

where to put an arrow head. End is default.

• rebelays <on/off> . this option can be specified only with the ‘rope’ line type.

• text <string> . valid only for label lines.

• height <value> . height of pit or wall:pit; available in METAPOST as a numeric

variable ATTR__height.

Options:

• id <ext_keyword> . ID of the symbol.

‘area’

Description: Area is specified by surrounding border lines. They may be of any type,

but must be listed in order and each pair of consecutive lines must intersect. In order to

be sure that lines intersect even after scrap transformation you may e.g. continue a lake

border 1 cm behind a passage wall—these overlaps will be automatically clipped by scrap

border. You may use invisible border to achieve this inside of the passage.

Syntax: area <type>

30

place <bottom/default/top>

clip <on/off>

visibility <on/off>

... border line references ...

endarea

Context: scrap

Arguments:

• <type> is one of following: water, sump, sand, debris, blocks, flowstone, moonmilk,

snow, ice, clay, pebbles, bedrock35, u36, mudcrack, pillar, pillar-with-curtains,

pillars, pillars-with-curtains, stalactite, stalactite-stalagmite, stalag-

mite.

Command-like options:

• the data lines consist of border line references (IDs)

• place <bottom/default/top> . changes displaying order in the map.

• clip <on/off> . specify whether a symbol is clipped by the scrap border.

• visibility <on/off> . displays/hides the symbol.

• context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.

Options:

• id <ext_keyword> . ID of the symbol.

‘join’

Description: Join works in two modes: it joins either two scraps or two or more points

or lines in a map together.

When joining more than two points or lines, use one join command for all of them, not

a sequence of join commands for pairs.37

When joining scraps, only passage walls are joined. It’s a good idea to place a scrap join

in the passage which is as simple as possible, otherwise you have to specify join for each

pair of objects which should be joined.38

35 An empty area which can be used to clean the background.
36 For user defined area symbols, may be followed by arbitrary subtype.
37 E.g. use join a b c, not join a b followed by join b c.
38 If you want some object which is clipped by a scrap boundary to continue to a neighbouring scrap,

use -clip off option for that object.

31

When joining more than two scraps at the same scrap border, a manual join must be

performed where the connection points must be entered in one join statement.39

Syntax: join <point1> <point2> ... <pointN> [OPTIONS]

Context: none, scrap, survey

Arguments:

• <pointX> can be an ID of a point or line symbol, optionally followed by a line point

mark <id>:<mark> (e.g. podangl_l31@podangl:mark1). <mark> can be also ‘end’ (end

of the line) or line point index (where 0 is the first point).

A special case is when <point1> and <point2> are scrap IDs—than the closest scrap

ends are joined together.

Options:

• smooth <on/off> indicates whether two lines are to be connected smoothly.

• count <N> (when used with scraps) . Therion will try to join scraps which connect in

N locations/passages.

‘equate’

Description: Sets the survey stations equivalence.

Syntax: equate <station list>

Context: none, survey

‘map’

Description: A map is a collection of either scraps or other maps of the same projection

type. It’s possible to include survey in the map—this will display centreline in the map.

Map object simplifies the data management when selecting data for output. See the

chapter How the map is put together for more thorough explanation.

(Note: break only changes level of maps of scraps and has no function when used with

maps of maps, as they will cause a break implicitely)

Syntax: map <id> [OPTIONS]

... scrap, survey or other map references ...

break

... next level scrap, survey or other map references ...

preview <above/below> <other map id>

endmap

Context: none, survey

39 Like join origScrapLineWest:end upperScrapLineWest:0 lowerScrapLineWest:0 and another
similar join command for the three east wall lines.

32

Arguments:

• <id> . scrap identifier

Command-like options:

• the data lines consist of scrap or map references. Note that you can not mix them

together.

• if you refer to map, you can specify offset at which this sub-map will be displayed

together with preview type of its original position. Syntax is following:

<map reference> [<offset X> <offset Y> <units>] <above/below/none>

• scraps following the break will be placed on another level (only applies to maps con-

sisting of scraps)

• preview <above/below> <other map id> will put the outline of the other map in the

specified preview position relative to the current map.

Preview is displayed only if the map is in the map-level level as specified by the

select command.

Use the revise command if you want to add maps from higher levels to the preview.

• colo[u]r <color> . set the map colour; this option overrides the automatic choice

when the layout specifies colour map-fg [map].

Options:

• projection/proj <plan/elevation/extended/none> . required if the map contains

survey.

• title <string> . description of the object

• survey <id> . associate a survey with map (e.g. all surveying statistics from this

survey will be used when this map is selected for output).

‘surface’

Description: Surface (terrain) specification. It is possible to display it in two ways: as a

scanned topographical map (both in 2D map and 3D model40) or surface grid – digital

elevation model (in 3D model only).

Syntax: surface [<name>]

cs <coordinate system>

bitmap <filename> <calibration>

grid-units <units>

grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

grid-flip (none)/vertical/horizontal

40 You need to enter elevation data in order to display the topographical map in 3D model. Currently
only JPEG maps are supported in 3D.

33

[grid data]

endsurface

Context: none, survey

Command-like options:

• cs <coordinate system> . coordinate system for bitmap calibration and grid origin

specification

• bitmap <filename> <calibration> . scanned topographical map.

calibration may have two forms:

1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y variables are pic-

ture coordinates (pixels; lower-left corner is 0 0), lower-case x/y variables are real

coordinates. Optional units apply to real coordinates (metres by default).

2. [X1 Y1 station1 X2 Y2 station2], where upper case X/Y variables are picture

coordinates and station1 and station2 are survey stations names.

• grid-units <units> . units in which grid is specified. Metres by default.

• grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

<origin x> <origin y> . specify coordinates of the lower-left (S-W) corner of the

grid

<x spacing> <y spacing> . distance between grid nodes in W-E and S-N directions

<x count> <y count> . number of nodes in the row and number of rows which form

the grid (see below).

• [grid data] . a stream of numbers giving the altitude a.s.l. in grid nodes. It starts in

the grid-origin and fills the grid in rows (in the row from W to E; rows from S to N).

• grid-flip (none)/vertical/horizontal . useful if your grid (exported from other

program) needs to be flipped

‘import’

Description: Reads survey data in different formats (currently processed centreline in

*.3d, *.plt, *.xyz formats). Survey stations may be referenced in scraps etc. When

importing a Survex 3D file, stations are inserted in the survey hierarchy if there exists an

identical hierarchy to that in 3D file.

Syntax: import <file-name> [OPTIONS]

Context: survey / all41

41 only with .3d files, where survey structure is specified

34

Options:

• filter <prefix> . if specified, only stations with given prefix and shots between them

will be imported. Prefix will be removed from station names.

• surveys (create)/use/ignore . specifies how to import survey structure (works only

with .3d files).

create . split stations into subsurveys, if subsurveys do not exist, create them

use . split stations into existing subsurveys

ignore . do not split stations into sub-surveys

• cs <coordinate system> . coordinate system for stations with fixed coordinates

• calibrate [<x> <y> <z> <X> <Y> <Z>] . coordinates in the imported file are shifted

from lower-case coordinates to upper-case coordinates.

‘grade’

Description: This command is used to store predefined precisions of centreline data. Built

in grades are: BCRA42 and UISv143.

See sd option description for centreline command to define your own grades.

Syntax: : grade <id>

...

[<quantity list> <value> <units>]

...

endgrade

Context: all

‘revise’

Description: This command is used to set or change properties of an already existing

object.

Syntax: The syntax of this command for object created with “single line” command is

revise id [-option1 value1 -option2 value2 ...]

For objects created with “multi line” commands is syntax following

42 see http://bcra.org.uk/surveying/; syntax is: BCRAn, where n may be 3 or 5
43 see http://www.uisic.uis-speleo.org/UISmappingGrades.pdf; syntax is: UISv1 n, where n is
-1 to 6 or X; whereas -1 to 2 are only declaratory and X requires sd data in centerline)

35

http://bcra.org.uk/surveying/
http://www.uisic.uis-speleo.org/UISmappingGrades.pdf

revise id [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endrevise

Context: all

Arguments:

The id stands for object identifier (the id of an object you want to revise must always

be specified).

Custom attributes

Objects survey, centreline, scrap, point, line, area, map and surface can contain user-

defined attributes in a form -attr <name> <value>. <name> may contain alphanumeric

characters, <value> is a string.

The custom attributes are used in map exports depending on the output format:

• in shapefile export they are written directly to the associated dbf file,

• in maps generated using METAPOST (PDF, SVG) the attributes are written in the

METAPOST source file as strings (named like ATTR_<name>) and can be evaluated and

used by the user to define symbols in macros.

You can test presence of such a variable using if known ATTR_<name>: ... fi.

XTherion

XTherion is a GUI (Graphical User Interface) for Therion. It helps a lot with creating

input data files. Currently it works in three main modes: text editor, map editor and

compiler.44

It is not necessary for Therion itself—you may edit input files in your favourite text editor

and run Therion from the command line. XTherion is also not the only GUI which may

be used with Therion. It is possible to write a better one, which would be more user

friendly, more WYSIWYG, faster, more robust and easier to use. Any volunteers?

This manual does not describe such familiar things as ‘if you want to save a file, go to

menu File and select Save, or press Ctrl-s’. Browse the top menu for a minute to get the

feeling of XTherion.

44 Here we’re concerned with creating data, so only the first two modes are described in this section.
For compiler features see the chapter Processing data.

36

For each mode of operation, there is an additional right or left menu. The submenus may

be packed; you may unpack them by clicking on the menu button. For most of the menus

and buttons, there is a short (translated) description in the status line, so it’s not hard

to guess the meaning of each one. The order of submenus on the side may be customized

by the user. Right-click on the menu button and select in the menu which of the other

menus it should be swapped with.

XTherion—text editor

XTherion’s text editor offers some interesting features which may help with creating text

input files: support for Unicode encoding and ability to open multiple files.45

To make entering data easy, it supports table formatting of centreline data. There is a

menu Data table for typing the data. It may be customized to the user’s data order by

pressing a Scan data format button when the cursor is below the data order specification

(‘data’ option in the ‘centreline’ command).

XTherion—map editor

Map editor allows you to draw and edit maps fully interactively. But don’t expect too

much. XTherion is not a truly WYSIWYG editor. It displays only the position, not

the actual shape, of drawn point or line symbols. Visually there is no difference between

a helictite and a text label—both are rendered as simple dots. The type and other

attributes of any object are specified only in the Point control and Line control menus.

Exercise: Find two substantial reasons, why the map drawn in XTherion can’t be identical

with Therion output. (If you answer this, you’ll know, why XTherion will never be a true

WYSIWYG editor. Authors’ laziness is not the correct answer.)

Let’s begin by describing typical use of the map editor. First, you have to decide which

part of the cave (which scrap) you’ll draw.46

After creating a new file in the map editor, you may load one or more images—scanned

survey sketches from the cave47—as a background for the drawing. Click on the Insert

button in Background images menu. Unfortunately, as a limitation of Tcl/Tk language,

only GIF, PNM and PPM (plus PNG and JPEG if you installed tkImg extension) images

are supported. Additionally XTherion supports XVI (XTherion vector image) format,

which displays centreline and LRUD information on the background, and PocketTopo

45 File encoding is specified on the first line of the file. This line is hidden by XTherion and may be
accessed only indirectly using the right-hand menu.

46 It’s possible to draw more than one scrap in each file, in which case all inactive scraps are rendered
yellow.

47 XTherion can’t scale nor rotate individual images, so use the same orientation, scale and DPI for all
images used in the same scrap.

37

Hints: 1. What does loop closure do? 2. Why do we use MetaPost?

data exported in Therion format (see below). All opened images are placed in the upper-

left corner of the working area. Move them by double clicking and dragging with the

right mouse button or through a menu. For better performance on slower computers, it’s

possible to temporarily unload a currently unused image from memory by unchecking its

Visibility check-box. It’s possible to open an existing file without loading background

images using Open XP menu.48

The size and zoom setting of the drawing area is adjusted in the corresponding menu.

Auto adjust calculates optimal size of the working area according to the sizes and positions

of loaded background images.

After these preparation steps, you’re ready for drawing, or, more precisely, for creating

a map data file. It’s important to remember, that you’re actually creating a text file

which should conform to the syntax described in the chapter Data format. Actually, only

a subset of the Therion commands are used in the Map editor: multi-line scrap ...

endscrap commands which may contain point, line and area commands. (Cf. chapter

Data format). This corresponds with a section of hand-drawn maps, which are built up

from points, lines and filled areas.

So, the first step is defining the scrap by a scrap ... endscrap multi-line command.

In the File commands menu click on the Action submenu and select Insert scrap. This

changes the Action button to Insert scrap if it had any other value. After pressing this

button a new scrap will be inserted in the beginning of the file. You should see lines

scrap - scrap1

endscrap

end of file

in the preview window above the Insert scrap button. This window is a simplified outline

of the text file, which will be saved by XTherion. Only the command (scrap, point,

line, text—why text see below) and its type (for point and line) or ID (for scrap)

are shown.

The full contents of any command are displayed in the Command preview menu.

For modifying previously-created commands, there are additional menus—e.g. Scrap con-

trol for the scrap command. Here you can change the ID (very important!) and other

options. For details see chapter Data format.

Now it’s possible to insert some point symbols. As with scrap insertion, go to the

File commands menu, click on the Action submenu and select Insert point; than press

newly renamed Insert point button. A shortcut for all this is Ctrl-p. Than click on the

desired spot in the working area and you’ll see a blue dot representing a point symbol.

Its attributes can be adjusted in the Point control menu. You’ll stay in ‘insert’ mode—

each click on the working area adds a new point symbol. Take care not to click twice

48 Note: Therion doesn’t use background images in any way unless you assign them to some scrap using
-sketch option.

38

on the same place—you would insert two point symbols in the same place! To escape

from ‘insert’ to ‘select’ mode, press Esc key on the keyboard or Select button in the File

commands menu.

What will be the order of commands in the output file? Exactly the same as in the outline

in the File commands menu. Newly created point, line and text objects are added before

the currently marked line in the outline. It is possible to change the order by selecting a

line and pressing Move down, Move up or Move to buttons in the File commands menu.

This way you can also move objects between scraps.

Drawing lines is similar to drawing in other vector editing programs, which work with

Bézier curves. (Guess how to enter the line insertion mode, other than using the shortcut

Ctrl-l.) Click where the first point should be, then drag the mouse with pressed left

button and release it where the first control point should be. Then click somewhere else

(this point will be the second point of the curve) and drag the mouse (adjusting the second

control point of the previous arc and the first control point of the next one simultaneously.)

If this explanation sounds too obscure, you can get some practise working in some of the

standard vector editors with comprehensive documentation. The line will be finished

after escaping from the insertion mode. Beginning and orientation of the line is marked

by a small orange tick to the left at the first point.

For line symbols, there are two control menus: Line control and Line point control. First

one sets attributes for the whole curve, like type or name. The check-box reverse is

important: Therion requires oriented curves and it is not unusual that you begin to draw

from the wrong end. The Line point control menu enables you to adjust the attributes of

any selected point on the line, such as the curve being smooth at this point (which is on

by default), or the presence of neighbouring control points (‘<<’ and ‘>>’ check-boxes).

Areas are specified by their surrounding lines. Click on Insert area and then click on the

lines surrounding the desired area. They are automatically inserted in the Area control

and named (if not already named). An alternate way is to insert them as a text49

command, the contents of which (entered in the Text editor menu of the Map editor) is

usual area ... endarea multi-line command (see the chapter Data format.)

If you draw some scraps with none projection, it’s necessary to calibrate the drawing

area. The scale can be defined only one way in XTherion—using coordinates of two points

(specified both in the picture coordinate system and in the ‘real’ coordinate system).

After selecting a scrap (click on its header in the File commands menu) two small red

squares connected by a red arrow will appear (by default, they’ll be in the lower corners

of drawing area). You have to drag them to points with known coordinates—usually

49 CAUTION! The command text is not a Therion command! It’s only a nickname for a block of
arbitrary text in XTherion. In the file saved by XTherion, there’ll only be whatever you type into
the Text editor or see in the Command preview. It may be an area definition or whatever you want,
such as a comment beginning with a ‘#’ character.

39

intersections of mm grid lines on the scanned drawing. If you can not see these points,

you can either

• press Scale button in the Scraps menu and click on two different places on the image

where the endpoints of calibration arrow should be, or

• move the mouse pointer to the desired position, read pointer coordinates from the

status bar and enter these coordinates into picture scale points boxes in the Scraps

control. After filling X1,Y1 and X2,Y2 coordinate pairs the calibration arrow will be

moved correspondingly.

Then you have to enter real coordinates of these points (X1, Y1, X2, Y2).

In the selection mode you can select existing line or point objects and set their attributes

in the corresponding menus, move them, or delete them (Ctrl-d or Action button in File

commands menu after setting Action to Delete).

There is a Search and select menu which makes it easy to switch between objects and

visualize things you can’t see at the first look at the picture. For example, if you enter

expression ‘station’ and press Show All, all stations on the picture will become red.

XTherion doesn’t do any syntax checking; it only writes drawn objects with their at-

tributes to a text file. Any errors are detected only when you process these files with

Therion.

TIP: Entering symbols of the same type at once saves you a lot of time because you

need not to change the symbol type and fill options for each new symbol. Options box

preserves the old value and it’s enough to change a few characters.50 It is a good idea to

start with drawing all survey stations (don’t forget to give them names according to the

real names in the centreline command), than all passage walls followed by all other point

symbols, lines and areas. Finally, draw cross-sections.

Additional tools

Help/Calibrate bitmap produces OziExplorer-compatible MAP file based on georef-

erencig data included in a PDF map.51

If the map in PDF format has been converted to raster using an external program, the

converter uses raster image and pdf map with the same base name located in the same

directory to calculate the calibration data.

If the PDF file is used directly, you have to set the DPI and output format before

automatic conversion52 to a raster format.

50 In the case of survey stations, XTherion automatically increases the station number for the next
symbol inserted.

51 Calibration information for nine distinct points is present if the centreline contains station(s) fixed
using geodetic coordinate system(s).

52 ghostscript and convert should be installed on your system. Note, that Windows installation
does not include ghostscript.

40

PocketTopo data exported in Therion format53 from PocketTopo application can be

imported in the text editor as well as in the map editor (File → Import → PocketTopo

therion export and Background Images → Insert → PocketTopo therion export). The

same file is used for both imports. Importing the sketch does not create scrap data

directly. The drawing is just displayed on the background like scanned bitmaps and

should be digitized manually.

Keyboard and mouse shortcuts in the Map editor

General

• Ctrl+Z . undo

• Ctrl+Y . redo

• F9 . compile current project

• to select an object in the listbox using the keyboard: switch using ‘Tab’ into the desired

listbox; move with the underlined cursor to the desired object; press ‘Space’

• PageUp/PageDown . scroll up/down in the side panel

• Shift+PageUp/PageDown . scroll up/down in the file commands window

Drawing area and background images

• RightClick . scroll the drawing area

• Double RightClick on the image . move the image

Inserting a scrap

• Ctrl+R . insert scrap

Inserting a line

• Crtl+L . insert a new line and enter an ‘insert line point’ mode

• LeftClick . insert a line point (without control points)

• Ctrl+LeftClick . insert a line point very close to the existing point (normally it’s

inserted right above closest existing point)

• LeftClick + drag . insert line point (with control points)

• hold Ctrl while dragging . fix the distance of the previous control point

• LeftClick + drag on the control point . move its position

• RightClick on one of the previous points . select the previous point while in insert

mode (useful if you want to change also the direction of the previous control point)

• Esc or LeftClick on the last point . end the line insertion

• LeftClick on the first line point . close the line and end the line insertion

53 This is a special text format which needs to be imported using XTherion and can not be processed
by Therion directly.

41

Editing a line

• LeftClick + drag . move the line point

• Ctrl+LeftClick + drag . move the line point close to the existing point (normally it is

moved right above the closest existing point)

• LeftClick on control point + drag . move the control point

Adding a line point

• select the point before which you want to insert points; insert required points; press

Esc or left-click on the point you selected at the beginning

Deleting a line point

• select the point you want to delete; press Edit line → Delete point in the Line control

panel

Splitting a line

• select the point at which you want to split the line; press Edit line → Split line in the

Line control panel

Inserting a point

• Ctrl+P . switch to ‘insert point’ mode

• LeftClick . insert point at a given position

• Ctrl+LeftClick . insert point very close to the existing point (normally it will be

inserted right above the closest point)

• Esc . escape from the ‘inset point’ mode

Editing a point

• LeftClick + drag . move the point

• Ctrl+LeftClick + drag . move the point close to the existing point (normally it is

moved right above the closest existing point)

• LeftClick + drag on the point arrow . change point orientation or size (according to

the given switches in the Point control panel)

Inserting an area

• press Ctrl+A or File commands → Insert → area to switch to the ‘insert area border’

mode

• RightClick on the lines, that surround the desired area

• Esc to finish the area border lines insertion

42

Editing an area

• select the area you want to edit

• press ‘Insert’ in the Area control to insert other border lines at the current cursor

position

• press ‘Insert ID’ to insert a border with a given ID at the current cursor position

• press ‘Delete’ to remove the selected area border line

Selecting an existing object

• LeftClick . select the object at the top

• RightClick . select the object right below the top object (useful when several points

lie above each other)

Thinking in Therion

Although everything (well, almost everything) about Therion input files has been ex-

plained, this chapter offers some additional hints and tips.

How to enter a centreline

The basic building block is the centreline command. If the cave is larger than a few

meters it’s a good idea to split the data into more files and separate the centreline data

from the map data.

We usually use one *.th file containing a centreline per survey trip. It’s handy to start

with an empty template file as shown below, where dots will be replaced with appropriate

texts.

encoding ISO8859-1

survey ... -title "..."

centreline

team "..."

team "..."

date ...

units clino compass grad

data normal from to compass clino length

...

endcentreline

endsurvey

To create a unique namespace the centreline command is enclosed in survey ... end-

survey command. It’s useful when the survey has the same name as the file which

43

contains it.54 The points will then be referenced using the @ character—see the survey

command description.

For really large caves it’s possible to build a hierarchical structure of directories. In such

a case we create one special file called INDEX.th which includes all other *.th files from

a given directory and contains equate commands to define connections between surveys.

How to draw maps

The most important thing is to devise a division of the cave into scraps. Scrap is the

basic building block of the map. It’s almost always a bad idea to try to fit each scrap

to corresponding *.th file with a centreline from one survey trip. The reason is that

the connections between scraps should be as simple as possible. Scraps in general are

independent on the centreline hierarchy so try to forget the survey hierarchy when drawing

maps and choose the best scrap joins.

We usually insert maps in the last-but-one level in survey hierarchy.55 Each scrap may

than contain arbitrary parts of any survey in the last level of the hierarchy. For example,

there is a survey main which contains surveys a, b, c and d. Surveys a – d contain

centreline data from four survey trips and each of them is in a separate file. There is a

map main_map which contains scraps s1 and s2. If the main_map is located in the main

survey, scrap s1 may cover part of the centreline from survey a, complete survey b and

part of c; s2 will cover part of the a and c surveys and a complete d survey. The survey

stations names will be referenced using the @ symbol (e.g. 1@a) in the scraps.56

Scraps are usually stored in *.th2 files. Each file may contain more scraps. To keep the

data well organized, there are some naming conventions: in the file foo.th2 all scraps

are named foo_si, where i is 1, 2 an so on. Cross-sections are named foo_ci, lines

foo_li etc. This helps a lot with large cave systems: if some scrap is referenced, you

immediately know in which file it has been defined.

Similar to *.th files, there may be one file INDEX.th2 per directory which includes all

the *.th2 files, and defines scrap joins and maps.

When drawing scraps you should check if the outline is properly defined: all lines creating

the outer border should have -outline out option; all lines surrounding inner pillars

-outline in option. Scrap outlines can’t intersect themselves—otherwise the inner side

of the scrap can’t be determined. There are two simple tests that the scrap outline is

correct:

• there is no METAPOST warning “scrap outline intersects itself”

54 E.g. survey entrance in the file entrance.th.
55 Remember that surveys create namespaces, so you may reference only the objects in the given survey

and all subsurveys.
56 If you include maps in the top-level survey, you may reference any survey station in any scrap, which

is very flexible. On the other hand you then have to use longer names in station references, like
3@dno.katakomby.jmn.dumbier.

44

• when you set a passage fill to any color (color map-fg <number> option in layout),

you may see what Therion considers to be inside the scrap.

How to create models

The model is created from scrap outlines. The height and depth of the passage are

computed from passage-height and dimensions point map symbols.

Therion in depth

How the map is put together

This chapter explains how -clip, -place, -visibility and -context options of point,

line and area commands work exactly. It also gives an explanation of color, trans-

parency, symbol-hide and symbol-show options of the layout command.

While exporting the map, Therion has to determine three attributes for each point, line

or area symbol: visibility, clipping and ordering.

(1) Symbol is visible if all of the following is true:

• it has the -visibility option set on (all symbols by default),

• it hasn’t been hidden by the -symbol-hide option in the layout,

• if its -context option is set, the corresponding symbol hasn’t been hidden by the

-symbol-hide option in the layout.

Only the visible symbols are exported.

(2) Some symbols are clipped by the scrap outline. These are by default all of the

following:

• point symbols: symbolic passage fills (bedrock. . . guano),

• line symbols: all line symbols which don’t have the -outline option set with the

exception of section, arrow, label, gradient and water-flow

• area symbols: all.

The default setting may be changed using the -clip option, if this is allowed for a

particular symbol. All other symbols are not clipped by the scrap boundary.

(3) Ordering: Each symbol belongs to one of the following groups which are drawn

consecutively:

• bottom . all symbols with the -place bottom option set

• default-bottom . all area symbols by default

45

• default . symbols which don’t belong to any other group

• default-top . ceiling-step and chimney by default

• top . all symbols with -place top option set

Ordering of symbols inside each group follows the order of commands in the input file57:

symbols which come first are drawn last (i.e. they are displayed at the top of each group).

Now we are ready to describe how the map (or atlas chapter) is constructed:

• map area is filled with color map-bg

• surface bitmaps are displayed if surface is set bottom

• FOR each scrap: outline is filled white

• grid is displayed if grid is set bottom

• preview below58 is filled with color preview-below

• FOR each level59:

BEGIN of transparency

FOR each scrap: outline is filled with color map-fg

FOR each scrap: area symbols are filled and clipped to scrap boundary

END of transparency

BEGIN of clipping by text labels (for all labels in this and upper levels)

FOR each scrap:

draw all symbols to be clipped (with the exception of line survey)

ordered from bottom to top

draw line survey symbols

clip to scrap boundary

FOR each scrap:

draw all symbols not to be clipped (with the exception of point station

and all labels) ordered from bottom to top

draw point station symbols

END of clipping by text labels

FOR each scrap: draw all (point and line) labels (including wall-altitude)

• preview above is drawn with color preview-above

• surface bitmaps are displayed if surface is set top

• grid is displayed if grid is set top

57 Or File commands menu in XTherion.
58 As specified using the preview option in the map command.
59 Level is a collection of scraps not separated by a break in the map command.

46

We both step and do not step in the same rivers.

Ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομέν τε καὶ οὐκ ἐμβαίνομεν.
—Heraclitus of Ephesus, th/th century BC

Processing data

Besides data files, which contain survey data, Therion uses a configuration file, which

contains instructions on how the data should be presented.

Configuration file

The configuration filename can be given as an argument to therion. By default Therion

searches for file named thconfig in the current working directory. It is read like any other

therion file (i.e. one command per line; empty lines or lines starting with ‘#’ are ignored;

lines ended with a backslash continue on the next line.) A list of currently supported

commands follow.

‘system’

Allows to execute system commands during therion compilation.60 Normally Therion

waits until the subprocess is finished. If you want to continue compilation without break,

use <command> & syntax on Linux and start <command> syntax on Windows.

‘encoding’

Works like the encoding command in data files—specifies character sets.

‘language’

Syntax:

• language <xx_[YY]>

Sets the output language for translatable texts.

‘cs’

Syntax:

• cs <coordinate system>

60 E.g. to open or refresh external PDF viewer.

47

Outside of layout command specifies the coordinate system for output. It is not possible

to specify more coordinate systems for different outputs (the last occurrence of cs is used

for all output files).

If no cs is defined in the configuration file, the first cs therion encounters in the data

files is used as an output cs.

Inside the layout specifies coordinate system for subsequent location data (origin, grid-

origin).

‘sketch-warp’

Syntax:

• sketch-warp <algorithm>

Specifies which scrap warping (morphing) algorithm to use. Possible algorithms are

line—the default; plaquette—invented by Marco Corvi.

‘input’

Works like input command in data files—includes other files.

‘source’

Description: Specifies which source (data) files Therion should read. You can specify

several files here; one per line. You can also specify them using the -s command line

option (see below).

It is also possible to type (some small snippets of) code directly in configuration file using

the multi-line syntax.

Syntax:

source <file-name>

or

source

. . . therion commands. . .

endsource

Arguments:

• <file-name>

48

‘select’

Description: selects objects (surveys and maps) for export. By default, all survey objects

are selected. If there is no map selected, all scraps belonging to selected surveys are

selected by default for map export.

If there are no scraps or maps in the data, centerline from all surveys is exported in the

map.

When exporting maps in different projections, you need to select them for each projection

separately.

select does not only affect subsequent <export> commands but instead also <export>

commands preceding the select command in the configuration file.

Syntax: select <object> [OPTIONS]

Arguments:

• <object> . any survey or map, identified by its ID.

Options:

• recursive <on/off> . valid only when a survey is selected. If set on (by default) all

subsurveys of the given survey are recursively selected/unselected.

• map-level <number> . valid only when a map is selected. Determines the level at

which map expansion for atlas export is stopped. By default 0 is used; if ‘basic’ is

specified, expansion is done up to the basic maps. Note: Map previews are displayed

only as specified in maps in the current map-level.

• chapter-level <number> . valid only when a map is selected. Determines the level

at which chapter expansion for atlas export is stopped. By default 0 is used, if ‘-’ or

‘.’ is specified, no chapter is exported for this map. If title-pages option in layout

is on, each chapter starts with a title page.

‘unselect’

Description: Unselects objects from export.

Syntax: unselect <object> [OPTIONS]

Arguments:

The same as the select command.

Options:

The same as the select command.

49

‘maps’

Description: Turns processing of maps on (default) or off. If you turn if off, all scraps from

selected surveys will be used in the output, no map definitions are taken into account.

Usefull for debugging map definitions.

Syntax: maps <on/off>

‘maps-offset’

Description: Turns drawing maps in offset on (default) or off. If you turn if off, all cave

passages will be displayed in detail in their actual position. All offset specifications will

be completely ignored.

Syntax: maps-offset <on/off>

‘log’

Description: Turn on logging of various info. Currently only extended elevation process-

ing log is supported.

Syntax: log extend

‘text’

Description: Specifies translation of any default therion text in output.

Syntax: text <language ID> <therion text> <my text>

Arguments:

• <language ID> . standard ISO language identifier (e.g. en or en_GB)

• <therion text> . therion text to translate. For list of therion texts and available

translations, see thlang/texts.txt file.

‘layout’

Description: Specifies layout for 2D maps. Settings which apply to atlas mode are marked

‘A’; map mode ‘M’.

Syntax: layout <id> [OPTIONS]

copy <source layout id>

cs <coordinate system>

north <true/grid>

50

scale <picture length> <real length>

base-scale <picture length> <real length>

units <metric/imperial>

rotate <number>

symbol-set <symbol-set>

symbol-assign <point/line/area/group/special> <symbol-type> \

<symbol-set>

symbol-hide <point/line/area/group/special> <symbol-type>

symbol-show <point/line/area/group/special> <symbol-type>

symbol-colour <point/line/area/group/special> <symbol-type> <colour>

min-symbol-scale <scale>

fonts-setup <tinysize> <smallsize> <normalsize> <largesize> <hugesize>

size <width> <height> <units>

overlap <value> <units>

page-setup <dimensions> <units>

page-numbers <on/off>

exclude-pages <on/off> <list>

title-pages <on/off>

nav-factor <factor>

nav-size <x-size> <y-size>

transparency <on/off>

opacity <value>

surface <top/bottom/off>

surface-opacity <value>

sketches <on/off>

layers <on/off>

grid <off/top/bottom>

grid-origin <x> <y> <x> <units>

grid-size <x> <y> <z> <units>

grid-coords <off/border/all>

origin <x> <y> <z> <units>

origin-label <x-label> <y-label>

own-pages <number>

page-grid <on/off>

legend <on/off/all>

legend-columns <number>

legend-width <n> <units>

colour-legend <smooth/discrete/off/on>

map-comment <string>

map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center>

map-header-bg <on/off>

map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center> <filename>

51

statistics <explo/topo/carto/copyright all/off/number>

<explo/topo-length on/hide/off>

<carto/copyright-count on/hide/off>

scale-bar <length> <units>

survey-level <N/all>

language <xx[_YY]>

colo[u]r-model <cmyk/rgb/grayscale>

colo[u]r <item> <colour>

smooth-shading <off/quick>

debug <on/all/first/second/scrap-names/station-names/off>

doc-author <string>

doc-keywords <string>

doc-subject <string>

doc-title <string>

code <metapost/tex-map/tex-atlas>

endcode

endlayout

Arguments:

<id> . layout identifier (to be used in the export command)

Command-like options:

• copy <source layout id> . set properties here that are not modified based on the

given source layout.

map presentation-related:

• scale <picture length> <real length> . set scale of output map or map atlas (M,

A; default: 1 200)

• base-scale <picture length> <real length> . if set, Therion will optically scale

the map by a (scale/base-scale) factor. This has the same effect as if the map

printed in base-scale would be photo-reduced to the scale. (M, A)

• rotate <value> . rotates the map (M, A; default: 0)

• units <metric/imperial> . set output units (M, A; default: metric)

• symbol-set <symbol-set> . use symbol-set for all map symbols, if available. Be

aware, that symbol set name is case sensitive. (M, A)

Therion uses following predefined symbol sets:

UIS (International Union of Speleology)

ASF (Australian Speleological Federation)

AUT (Austrian Speleological Association)

BCRA (British Cave Research Association)

52

NSS (National Speleological Society/USA)

NZSS (New Zealand Symbol Set)

SBE (Brazilian Speleological Society -Sociedade Brasileira de Espeleologia)

SKBB (Speleoklub Banská Bystrica)

• symbol-assign <point/line/area/group/special> <symbol-type> <symbol-set>

. display a particular symbol in the given symbol-set. This option overrides symbol-set

option.

If the symbol has a subtype, <symbol-type> argument may have one of the following

forms: type:subtype or simply type, which assigns new symbol set to all subtypes of

a given symbol.

Following symbols may not be used with this option: point section (which isn’t rendered

at all) and all point and line labels (label, remark, altitude, height, passage-height,

station-name, date). See the chapter Changing layout/Customizing text labels for details

how to change labels’ appearance. (M, A)

Group may be one of the following: all, centerline, sections, water, speleothems,

passage-fills, ice, sediments, equipment.

There are two special symbols: north-arrow, scale-bar.

• symbol-hide <point/line/area/group/special> <symbol-type> . don’t display

particular symbol or group of symbols.

You may use group cave-centerline, group surface-centerline, point cave-

station, point surface-station and group text in symbol-hide and symbol-show

commands.

Use flag:<entrance/continuation/sink/spring/doline/dig> as a <symbol-type>

to hide stations with particular flags (e.g. symbol-hide point flag:entrance).

May be combined with symbol-show.(M, A)

• symbol-show <point/line/area/group/special> <symbol-type> . display partic-

ular symbol or group of symbols. May be combined with symbol-hide. (M, A)

• symbol-colo[u]r <point/line/area/group/special> <symbol-type> <colour> .

change colour of particular symbol or group of symbols.61 (M, A)

• min-symbol-scale <scale> . define minimal <scale>, from which points and lines

are displayed on the map. E.g. for min-symbol-scale M, no points or lines scaled S

and XS will be shown on the map. <scale> has the same format, as scale option for

points and lines.

• fonts-setup <tinysize> <smallsize> <normalsize> <largesize> <hugesize> .

specify size of the text in points. <normalsize> applies to point label, <smallsize>

61 Note: colour change currently applies to pattern fills only if (1) output format is PDF and (2) META-
POST version is at least 1.000

53

applies to remark and all other point labels. Each of them may apply to line label

according to its -scale option.

The defaults are 8 10 12 16 24 for scales upto 1:100; 7 8 10 14 20 for scales upto

1:200; 6 7 8 10 14 for scales upto 1:500 and 5 6 7 8 10 for scales smaller than 1:500.

page-width

pa
ge

-h
ei

gh
t

size (width)

si
ze

 (
he

ig
ht

)

overlap

le
ft

-m
ar

gi
n

top-margin

paper-width

pa
pe

r-
he

ig
ht

grid-size (width)

gr
id

-s
iz

e
(h

ei
gh

t)

page layout related:

• size <width> <height> <units> . set map size in the atlas mode. If not specified, it

will be calculated from page-setup and overlap. In map mode applies iff page-grid

is on (M, A; default: 18 22.2 cm)

54

• overlap <value> <units> . set overlap size in paper units in the atlas mode or map

margin in the map mode (M, A; default: 1 cm)

• page-setup <dimensions> <units> . set page dimensions in this order: paper-width,

paper-height, page-width, page-height, left-margin and top-margin. If not specified, it

will be computed from size and overlap (A; default: 21 29.7 20 28.7 0.5 0.5 cm)

• page-numbers <on/off> . turn on/off page numbering (A; default: true)

• exclude-pages <on/off> <list> . exclude specified pages from cave atlas. The list

may contain page numbers separated by a comma or dash (for intervals) e.g. 2,4-

7,9,23 means, that pages 2, 4, 5, 6, 7, 9 and 23 should be omitted. Only the map

pages should be counted. (Set own-pages 0 and title-pages off to get the correct

page numbers to be excluded.) Changes of own-pages or title-pages options don’t

affect page excluding. (A)

• title-pages <on/off> . turn on/off title pages before each atlas chapter (A; default:

off)

• nav-factor <factor> . set atlas navigator zoom factor (A; default: 30)

• nav-size <x-size> <y-size> . set number of atlas pages in both directions of navi-

gator (A; default: 2 2)

• transparency <on/off> . set transparency for the passages (underlying passages are

also visible) (M, A; default: on)

• opacity <value> . set opacity value (used if transparency is on). Value range is

0–100. (M, A; default: 70)

• surface-opacity <value> . set the surface bitmap opacity (used if transparency is

on). Value range is 0–100. (M, A; default: 70)

• surface <top/bottom/off> . set the position of the surface bitmap above/below the

map. (M, A; default: off)

• sketches <on/off> . turn on/off displaying of morphed sketch bitmaps. (M, A; de-

fault: off)

• layers <on/off> . enable/disable PDF 1.5 layers (M, A; default: on)

• grid <off/bottom/top> . enable/disable grid (optionally coordinates’ values may be

also displayed) (M, A; default: off)

• cs <coordinate system> . coordinate system for origin and grid-origin

• north <true/grid> . specify default orientation of the map. By default, true (astro-

nomical) north is used. It is ignored when used with local coordinate system.

• grid-origin <x> <y> <x> <units> . set coordinates of grid origin (M, A)

• grid-size <x> <y> <z> <units> . set grid size in real units (M, A; default is equal

to scalebar size)

55

• grid-coords <off/border/all> . specify where to label grid with coordinates. (M,

A; default: off)

• origin <x> <y> <z> <units> . set origin of atlas pages (M, A)

• origin-label <x-label> <y-label> . set label for atlas page which has the lower

left corner at the given origin coordinates. May be either a number or a string.62 (M,6.1.0

A; default: 0 0)

• own-pages <number> . set number of own pages added before the first page of auto-

matically generated pages in atlas mode (currently required for correct page numbering)

(A; default: 0)

• page-grid <on/off> . show pages key plan (M; default: off)

map legend related:

• map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center> . print map header at

location specified by <x> <y>. Predefined map header contains some basic information

about cave: name, scale, north arrow, list of surveyors etc. It is fully customizable (see

the chapter Changing layout for details). <x> is easting (left-right on page). <y> is

northing (up/down page). Ranges for <x> and <y> are -100–200. Lower-left corner of

the map is 0 0, upper-right corner is 100 100. The header is aligned with the specified

corner or side to this anchor point. (M; default: 0 100 nw)

• map-header-bg <on/off> . when on, background of map header is filled with back-

ground color (e.g. to hide map grid). (M; default: off)

• map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center> <filename> . include image63

specified by <filename> into map at location specified by <x> <y>. For coordinates

and alignment details, see map-header specification.

• legend-width <n> <units> . legend width (M, A; default: 14 cm)

• legend <on/off/all> . display list of used map symbols in the map header. If set to

all, all symbols from the current symbol set are displayed. (M, A; default: off)

• colo[u]r-legend <smooth/discrete/off/on> . set type of map-fg colours legend

when map-fg is set to altitude, scrap or map. For compatibility reasons, on is equivalent

to smooth. (M, A; default: smooth if applicable)

• legend-columns <number> . adjusts the number of legend columns (M, A; default:

2)

• map-comment <string> . optional comment displayed at the map header (M)

• statistics <explo/topo/carto/copyright all/off/number> or

62 String labels form the following sequence, either in lower or upper case: A, B, ..., Z, AA, AB, ...
63 Note that you can include PDF too, which may be used to combine plan and extended elevation into

one nice looking PDF file.

56

• statistics <explo/topo-length on/hide/off> . display some basic statistics; if

set to off, team members are sorted alphabetically; otherwise according to their con-

tribution to exploration and surveying (M, A; default: hide)

• statistics <carto/copyright-count on/hide/off> . display number of scraps for5.5.4

given author/copyright string; if set to off, items are sorted alphabetically; otherwise

by number of scraps (M, A; default: hide)

• scale-bar <length> <units> . set the length of the scale-bar (M, A)

• language <xx[_YY]> . set output language. Available languages are listed on the

copyright page. See the Appendix if you want to add or customize translations. (M,

A)

• colo[u]r-model <cmyk/rgb/grayscale> . select the output colour model (M, A;

default: cmyk).

The CMYK colour model is intended for printing. Black overprint is used for the best

appearance of black lines and texts. The hue of other colours may vary depending on

the type or settings of the RIP or printer driver.

The RGB colour model is intended for screen or multimedia projector presentation. If

used for printing, the result will depend on the colour management settings and also

on particular colour, as not all RGB colours can be represented on printer.

The grayscale colour model is meant for printing on B&W printers.

If input colours (lookup, colour in the layout) do not match the output colour model

(e.g. only RGB is defined in the lookup and CMYK selected as the colour-model),

they will be converted to the output model.

• colo[u]r-profile <cmyk/rgb/grayscale> <filename> . assign an ICC profile to

colours specified in the given colour model. ICC profiles are applied only to drawings,

not to embedded raster images like sketches and surface bitmaps. (M, A)

• colo[u]r <item> <colour> . customize colour for special map items (map-fg, map-

bg, preview-above, preview-below, labels). Colour range is 0–100 for grayscale,

[0–100 0–100 0–100] triplet for RGB colours and [0–100 0–100 0–100 0–100] quadruplet

for CMYK colours.64 RGB colours can be specified in hexadecimal format (e.g. ffeeaa).

For map-fg, you can use altitude, scrap or map as colours. In this case the map is

coloured according to altitude, scraps or maps.

For map-bg, you can use transparent to omit page background completely.

For labels, you can switch colour on/off. If on, labels are coloured using the colour

of associated scrap.

64 Note, that not all colour combinations are valid; e.g. no printer will print CMYK [100 100 100 100].
The maximum ink coverage or limit (C +M + Y +K) may be around 240 or 300, depending on the
printer.

57

• smooth-shading <off/quick> . set the mode of smooth scrap backgroud shading. 6.0

By default, altidute and depth colour is interpolated across the scrap the quick way.

Some issues are present if transparent symbol colours are used.65 More precise modes

should be added in the future. If off, scrap is filled with single colour.

• debug <on/all/first/second/scrap-names/station-names/off> . draw scrap in

different stages of transformation in different colours to see how Therion distorts map

data. See the description of scrap command for details. The points with distance

changed most during transformation are displayed orange. If scrap-names is specified,

scrap names are shown for each scrap, station-names displays name of each survey

station.

• survey-level <N/all> . N is the number of survey levels displayed next to the station

name (M, A; default: 0).

PDF related:

• doc-author <string> . set document author (M, A)

• doc-keywords <string> . set document keywords (M, A)

• doc-subject <string> . set document subject (M, A)

• doc-title <string> . set document title (M, A)

customization:

• code <metapost/tex-map/tex-atlas> . Add/redefine TEX and METAPOST macros

here. This allows user to configure various things (like user defined symbols, map and

atlas layout at one place &c.) See the chapter Changing layout for details.

• endcode . should end the TeX and METAPOST sections

‘lookup’

Description: Allows to define lookup maps. They are used for defining custom coloring

of maps.66

Syntax: lookup <type>[:<index>] [-title "custom title text"]

<parameter(s)> [colour] ["text in legend"]

...

endlookup

Arguments:

• <type> . May be altitude, explo-date, topo-date, map or scrap.

65 Coloured scrap background is visible underneath the semitransparent areas, although only lower-
scrap-drawings should be visible.

66 see colour command.

58

• <index> . the index is a user defined string that allows to distinguish different lookup

maps for the same type.

• <parameter> . the thing, you want to set the color for, e.g. an altitude with type

altitude. May be distinct values or (if appropriate) bands.

• [colour] . grayscale value, RGB triplet, CMYK quadruplet or a combination of eight

values (RGB, grayscale, CMYK). Use empty brackets ([]) if you want Therion to use

its default colour palette together with a text label.

• [text in legend] . some optional text to show in the legend.

Example: Banded altitudes. It should generate red-blue scale with desired values.

lookup altitude -title "Altitude legend"

700 [100 0 0] "700 m a.s.l."

680

660

640

620

600 [0 0 100] "below 600 m"

endlookup

Example: Using banded altitude specification (with index banded). Notice that if the

text is omitted, then the default will display the range, ie 1600 m - 1500 m

lookup altitude:banded

[1500 1600] [] # <- displays "1600 m - 1500 m"

[1800 1900] [] "cave floor 2"

endlookup

‘setup3d’

Syntax:

• setup3d <value>

Temporary hack to set sampling distance in meters when generating piecewise linear 3d

model from passage walls made of Bézier curves.

‘sketch-colors’

Syntax:

• sketch-colors <number-of-colors>

This option can be used to reduce size of sketch bitmap images in maps.

59

‘export’

Description: Exports selected surveys or maps.

Syntax:

• export <type> [OPTIONS]

Arguments:

• <type> . The following export types are supported:

model . 3D model of the cave

map . one page 2D map

atlas . 2D atlas in more pages

cave-list . summary table of caves

survey-list . summary table of surveys

continuation-list . list of possible continuations

database . SQL database with centreline

Options:

common:

• encoding/enc <encoding> . set output encoding

• output/o <file> . set output file name. If no file name is given the prefix “cave.”

is used with an extension corresponding to output format.

If the output filename is given and no output format is specified, the format is deter-

mined from the filename extension.

model:

• format/fmt <format> . set model output format. Currently the following output

formats are supported: loch (native format; default), compass (plt file), survex (3d

file), dxf, esri (3d shapefiles), vrml, 3dmf and kml (Google Earth).

• enable <walls/[cave/surface-]centerline/splay-shots/surface/all> and

• disable <walls/[cave/surface-]centerline/splay-shots/surface/all> .

selects which features to export, if the format supports it. Surface is currently exported

in therion format only.

• wall-source <maps/centerline/all/splays> . set source data for passage wall mod-

eling.

60

map/atlas:

• format/fmt <format> . set map format. Currently pdf, svg, xhtml67, survex, dxf,

esri68, kml (Google Earth), xvi69 and bbox70 for map; pdf for atlas are supported.

• projection <id> . unique identifier that specifies the map projection type. (See the

scrap command for details.)

If there is no map defined, all scraps in the given projection are exported.

If there are no scraps with the specified projection then Therion will display centreline

from selected surveys.

• layout <id> . use predefined map or atlas layout.

• layout-xxx . where xxx stands for other layout options. Using this you can change

some layout properties directly within the export command.

• encoding/enc <encoding> . set output encoding

common for lists:

• format/fmt <format> . set continuation output format. Currently the following out-

put formats are supported: html (default), txt, kml71 and dbf.

continuation-list:

• attributes <(on)/off> . set whether to export user defined attributes in continua-

tion list table.

• filter <(on)/off> . set whether continuations without comment/text should be fil-

tered out.

cave-list:

• location <on/(off)> . set whether to export coordinates of cave entrances in the

table.

• surveys (on)/off . exports raw list of caves when set off. Otherwise survey structure

with aggregated statistics is also displayed.

database:

• format/fmt <format> . currently sql and csv

• encoding/enc <encoding> . set output encoding

File formats summary:

67 SVG embedded in XHTML file which contains also legend
68 ESRI shapefiles. Multiple files are written to a directory with the specified filename.
69 Xtherion vector image. XVI images may be used in xtherion to draw in-scale maps. Scale (100 DPI

image resolution is assumed) and grid-size from layout are used in export.
70 Text file containing geographic coordinates of lower-left and upper-right corners of the map area.
71 For cave-list and continuation-list.

61

export type available formats

model loch, dxf, esri, compass, survex, vrml, 3dmf, kml

map pdf, svg, xhtml, dxf, esri, survex, xvi, kml, bbox

atlas pdf

database sql, csv

lists html, txt, kml, dbf

Running Therion

Now, after mastering data and configuration files, we’re ready to run Therion. Usually

this is done from the command line in the data directory by typing

therion

The full syntax is

therion [-q] [-L] [-l <log-file>]

[-s <source-file>] [-p <search-path>]

[-b/--bezier]

[-d] [-x] [--use-extern-libs] [<cfg-file>]

or

therion [-h/--help]

[-v/--version]

[--print-encodings]

[--print-environment]

[--print-init-file]

[--print-library-src]

[--print-symbols]

[--print-tex-encodings]

[--print-xtherion-src]

[--reproducible-output]

[--generate-output-crc]

[--verify-output-crc]

Arguments:

<cfg-file> Therion takes only one optional argument: the name of a configuration

file. If no name is specified thconfig in the current directory is used. If there is no

thconfig file (e.g. current directory is not a data directory), Therion exits with an

error message.

Options:

• -d . Turn on debugging mode. The current implementation creates a temporary direc-

tory named thTMPDIR (in your system temporary directory) and does not delete any

temporary files.

62

• -h, --help . Display short help.

• -L . Do not create a log-file. Normally therion writes all the messages into a therion.log

file in the current directory.

• -l <log-file> . Change the name of the log file.

• -p <search-path> . This option is used to set the search path (or list of colon-

separated paths) which therion uses to find its source files (if it doesn’t find them

in the working directory).

• -q . Run therion in quiet mode. It will print only warning and error messages to

STDERR.

• --print-encodings . Print a list of all supported input encodings.

• --print-tex-encodings . Print a list of all supported encodings for PDF output.

• --print-init-file . Print a default initialization file. For more details see the Ini-

tialization section in the Appendix.

• --print-environment . Print environment settings for therion.

• --print-symbols . Print a list of all therion supported map symbols in symbols.xhtml

file.

• --reproducible-output . Create reproducible PDF and SVG files. No volatile infor-

mation is included (e.g. creation date or software version is omitted from the metadata).

TEX variables \thversion and \currentdate are set to predefined constatnts. This

option enforces the use of Therion loop closure.

To get the same output files on different platforms, it’s necessary to install the same

set of basic fonts used by Therion72 and use reasonably recent TEX distribution on all

platforms.

• --generate-output-crc . Generate a ‘.crc’ file with CRC32 checksum for each output

file. Implies --reproducible-output.

• --verify-output-crc . Verify that the output file has not been changed. Generate

reproducible output, calculate CRC32 checksum and check it against one saved in ‘.crc’

file.

• -s <source-file> . Set the name of the source file.

• --use-extern-libs . Don’t copy TEX and METAPOST macros to working directory.

TEX and METAPOST should search for them on their own. Use with caution.

• -v, --version . Display version information.

• -x . Generate file ‘.xtherion.dat’ with additional information for XTherion.

72 CM, CS and/or CMCYR font families; the ‘.pfb’ font files have to be exactly the same on all platforms
as they are embedded into PDF files.

63

XTherion—compiler

XTherion makes it easier to run Therion especially on systems without a command line

prompt. Compiler window is the default window of XTherion. To run Therion it’s enough

to open a configuration file and press ‘F9’ or ‘Compile’ button.

XTherion displays messages from Therion in the lower part of the screen. Each error

message is highlighted and is hyperlinked to the source file where the error occurred.

After a first run there are activated additional menus Survey structure and Map structure.

User may comfortably select a survey or map for export by double clicking on some of the

items in the tree. Simple click in the Survey structure tree displays some basic information

about the survey in the Survey info menu.

64

What do we get

Information files

Log file

Besides the messages from Therion and other programs used, the log file contains infor-

mation about computed values of magnetic declination and meridian convergence, loop

errors, scrap distortions and transformations beetwen coordinate reference systems chosen

by the Proj library.

Absolute loop error is
√

∆x2 + ∆y2 + ∆z2, where ∆x is the difference between the iden-

tical start and end points of the loop before the error distribution measured along the

x coordinate axis; similarly for y and z. Percentage loop error is calculated as absolute

error / loop length. Average error is the simple arithmetic average of all loop errors.

Scrap distortion is calculated using the distortion measure defined for all pairs of points

(point symbols, points and control points of line symbols) in the scrap. The measure is

calculated as |da−db|
db

, where db is the distance of points before warping and da is the distance

of points after warping. The maximal and average scrap distortions are calculated as a

maximum or average of such measures applied to all pairs of points.

XTherion

Therion provides some basic facts about each survey (length, vertical range, N–S range,

E–W range, number of shots and stations) if -x option is given. This information is

displayed in XTherion, Compiler window, Survey info menu, when some survey from the

Survey structure menu is selected.

SQL export

SQL export makes it easy to get very detailed and subtle information about the centreline.

It is a text file starting with a tables declaration (where ‘?’ stands in the following listing

for a maximal value required by the column data)

create table SURVEY (ID integer, PARENT_ID integer,

NAME varchar(?), FULL_NAME varchar(?), TITLE varchar(?));

create table CENTRELINE (ID integer, SURVEY_ID integer,

TITLE varchar(?), TOPO_DATE date, EXPLO_DATE date,

65

LENGTH real, SURFACE_LENGTH real, DUPLICATE_LENGTH real);

create table PERSON (ID integer, NAME varchar(?), SURNAME varchar(?));

create table EXPLO (PERSON_ID integer, CENTRELINE_ID integer);

create table TOPO (PERSON_ID integer, CENTRELINE_ID integer);

create table STATION (ID integer, NAME varchar(?),

SURVEY_ID integer, X real, Y real, Z real);

create table STATION_FLAG (STATION_ID integer, FLAG char(3));

create table SHOT (ID integer, FROM_ID integer, TO_ID integer,

CENTRELINE_ID integer, LENGTH real, BEARING real, GRADIENT real,

ADJ_LENGTH real, ADJ_BEARING real, ADJ_GRADIENT real,

ERR_LENGTH real, ERR_BEARING real, ERR_GRADIENT real);

create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));

which is followed by a mass of SQL insert commands. This file may be loaded into any

SQL database (after some database-dependent initialization, which may include running

an SQL server and connecting to it, creating a database and connecting to it. A good idea

is to start a transaction before loading this file, if the database doesn’t start a transaction

automatically.) It’s important to set-up database encoding to match the one specified in

Therion export database command.

SURVEY

 ID: integer

 PARENT_ID: integer

 NAME: varchar

 FULL_NAME: varchar

 TITLE: varchar

CENTRELINE

 ID: integer

 SURVEY_ID: integer

 TITLE: varchar

 TOPO_DATE: date

 EXPLO_DATE: date

 LENGTH: real

 SURFACE_LENGTH: real

 DUPLICATE_LENGTH

EXPLO

 PERSON_ID: integer

 CENTRELINE_ID: integer

TOPO

 PERSON_ID: integer

 CENTRELINE_ID: integer

PERSON

 ID: integer

 NAME: varchar

 SURNAME: varchar

STATION

 ID: integer

 NAME: varchar

 SURVEY_ID: integer

 X: real

 Y: real

 Z: real

STATION_FLAG

 STATION_ID: integer

 FLAG: char(3)

SHOT

 ID: integer

 CENTRELINE_ID: integer

 FROM_ID: integer

 TO_ID: integer

 LENGTH: real

 BEARING: real

 GRADIENT: real

 ADJ_LENGTH: real

 ADJ_BEARING: real

 ADJ_GRADIENT: real

 ERR_LENGTH: real

 ERR_BEARING: real

 ERR_GRADIENT: real

SHOT_FLAG

 SHOT_ID: integer

 FLAG: char(3)

Table and column names are self-explanatory; for undefined or non-existing values NULL

is used. FLAG in SHOT_FLAG table is dpl or srf for duplicated or surface shots; in STA-

TION_FLAG table ent, con, fix, spr, sin, dol, dig, air, ove, arc for stations with

entrance, continuation, fixed, spring, sink, doline, dig, air-draught, overhang or arch

attributes, respectively.

Examples of simple queries follow:

66

List of survey team members with information about how much each of them has surveyed:

select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME

from CENTRELINE, TOPO, PERSON

where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID = PERSON_ID

group by NAME, SURNAME order by 1 desc, 4 asc;

Which parts of the cave were surveyed in the year 1998?

select TITLE from SURVEY where ID in

(select SURVEY_ID from CENTRELINE

where TOPO_DATE between ’1998-01-01’ and ’1998-12-31’);

How long are the passages lying between 1500 and 1550 m a.s.l.?

select sum(LENGTH) from SHOT, STATION S1, STATION S2

where (S1.Z+S2.Z)/2 between 1500 and 1550 and

SHOT.FROM_ID = S1.ID and SHOT.TO_ID = S2.ID;

Lists—caves, surveys, continuations

Using export continuation-list you get an overview of all points in the centreline and

scraps marked73 as a possible continuation.

export cave-list gives you a tabular information about surveyed caves (you need to

specify entrance flags in your data) including length, depth and entrance(s) location.

Detailed information about each sub-survey gives export survey-list command. The

length includes shots with approximate flags, but not explored, duplicate or surface.

2D maps

Maps for printing

Maps are produced in PDF and SVG formats, which may be viewed or printed in a wide

variety of viewers. Be sure to uncheck Fit page to paper or similar option if you want to

print in the exact scale.

In atlas mode some additional information is put on each page: page number, map name,

and page label.

The numbers of neighbouring pages in N, S, E and W directions, as well as in upper and

lower levels are especially useful. There are also hyperlinks at the border of the map if

the cave continues on the next page and on the appropriate cells of the Navigator.

73 Using station attribute for centreline points and point continuation in scraps.

67

PDF files are highly optimized—scraps are stored in XObject forms only once in the

document and then referenced on appropriate pages. Therion uses advanced PDF features

like transparency and layers.

Created PDF files may be optionally post-processed in applications like pdfTEX or Adobe

Acrobat—it’s possible to extract or change some pages, add comments or encryption, etc.

If the map was produced using georeferenced data then it also contains georeferencing

information. This can be extracted by XTherion to produce georeferenced raster images

(see XTherion/Additional tools for details).

Maps for GIS

Maps produced in DXF, ESRI or KML formats may be further processed in appropriate

software. These maps do not contain visualized map symbols

Special-purpose maps

Map in XVI format contains centreline with LRUD information (and optionally morphed

sketches) and can be imported in XTherion to serve as a background for digitization.

Map in Survex format is intended for a quick preview in Aven.

3D models

Therion may export 3D models in various formats besides its native format. These may

be loaded in appropriate viewing, editing or raytracing programs to be printed or further

processed. If the format doesn’t support arbitrary passage shape definition, only the

centreline is included.

Loch

Loch is a 3D model viewer included in the Therion distribution. It supports e.g. high-

resolution rendering to file and stereo view using 3D-glasses.

68

Jesus said, ‘Let him who

seeks continue seeking until he finds. When he

finds, he will become troubled. When he becomes

troubled, he will be astonished, and he will rule over

the all.’ —Gospel according to Thomas, nd century

Changing layout of PDF maps

This chapter is extremely useful if you’re not satisfied with the predefined layout of map

symbols and maps provided, and want to adapt them to your needs. However, you need

to know how to write plain TEX and METAPOST macros to do this.

Page layout in the atlas mode

The layout command allows basic page setup in the atlas mode. This is done through its

options such as page-setup or overlap. But there are no options which would specify

the position of map, navigator and other elements inside the area defined by page-width

and page-height dimensions; e.g., why is the navigator below the map and not on its

right or left side?

There are many possible arrangements for a page. Rather than offer even more options for

the layout command, Therion uses the TEX language to describe other page layouts. This

approach has the advantage that the user has direct access to the advanced typesetting

engine without making the language of Therion overly complex.

Therion uses pdfTEX with the plain format for typesetting. So you should be familiar

with the plain TEX if you wish to define new layouts.

The ultimate reference for plain TEX is

Knuth, D. E.: The TEXbook, Reading, Massachusetts, Addison-Wesley 11984

For pdfTEX’s extensions there is a short manual

Thành, H. T.—Rahtz, S.—Hagen, H.: The pdfTEX user manual, available at

http://www.pdftex.org

The TEX macros are used inside the code tex-atlas part of the layout command (see

the chapter Processing data for details). The basic one predefined by Therion is the

69

http://www.pdftex.org

\dopage

macro. The idea is simple: for each page Therion defines TEX variables (count, token,

and box registers) which contain the page elements (map, navigator, page name etc.). At

the end of each page macro \dopage is invoked. This defines the position of each element

on the page. By redefining this macro you’ll get the desired page layout. Without this

redefinition you’ll get a standard layout.

Here is the list of variables defined for each page:

Boxes:

• \mapbox . The box containing the map. Its width (height) is set according to the size

and overlap options of the layout command to

size_width + 2*overlap or

size_height + 2*overlap, respectively

• \navbox . The box containing the navigator, with dimensions

size_width * (2*nav_size_x+1) / nav_factor or

size_height * (2*nav_size_y+1) / nav_factor, respectively

Both \mapbox and \navbox also contain hyperlinks.

Count registers:

• \pointerE, \pointerW, \pointerN, \pointerS contain the page number of the neigh-

bouring pages in the E, W, N and S directions. If there is no such page its page number

is set to 0.

• \pagenum current page number

Token registers:

• \pointerU, \pointerD contain information about pages above and below the current

page. It consists of one or more concatenated records. Each record has a special format

page-name|page-number|destination||

If there are no such pages, the value is set to notdef.

See the description of the \processpointeritem macro below for how to extract and

use this information.

• \pagename . the name of the current map according to the options of the map command.

• \pagelabel . the page label as specified by origin and origin-label options of the

layout command.

70

The following variables are set at the beginning of the document:

• \hsize, \vsize . TEX page dimensions, set according to page-width and page-height

parameters of the page-setup option of the layout command. They determine our

playground when defining the page layout using the \dopage macro.

• \ifpagenumbering . This conditional is set true or false according to the page-

numbers option of the layout command.

There are also some predefined macros which help with the processing of \pointer*

variables:

• \showpointer with one of the \pointerE, \pointerW, \pointerN or \pointerS as

an argument displays the value of the argument. If the value is 0 it doesn’t display

anything. This is useful because the zero value (no neighbouring page) shouldn’t be

displayed.

• \showpointerlist with one of the \pointerU or \pointerD as an argument presents

the content of this argument. (Which contains \pointerU or \pointerD, see above.)

For each record it calls the macro \processpointeritem, which is responsible for data

formatting.

Macro \showpointerlist should be used without redefinition in the place where you

want to display the content of its argument; for custom data formatting redefine \pro-

cesspointeritem macro.

• \processpointeritem has three arguments (page-name, page-number, destination)

and visualizes these data. The arguments are delimited as follows

\def\processpointeritem#1|#2|#3\endarg{...}

An example definition may be

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{\pdfstartlink attr {/Border [0 0 0]}%

goto name {#3} #2 (#1)\pdfendlink}%

}

(note how to use the destination argument), or much simpler (if we don’t need hyperlink

features):

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{#2 (#1)}%

}

For font management there are macros

• \size[#1] for size changes,

• \cmykcolor[#1 #2 #3 #4], \[rgb]color[#1 #2 #3] and \graycolor[#1] for text

colour changes (the values should be in the range 0–100),

• \black which selects the black color in the appropriate colour model, and

• \rm, \it, \bf, \ss, \si for type face switching.

71

See below for a list of predefined texts which may be used in the atlas.

There is also a \framed macro which takes a box as an argument and displays the box

framed. The frame style can be customized by redefining the \linestyle macro which

defaults to 1 J 1 j 1.5 w.

Now we’re ready to define the \dopage macro. You may choose which of the predefined

elements to use. A very simple example would be

layout my_layout

scale 1 200

page-setup 29.7 21 27.7 19 1 1 cm

size 26.7 18 cm

overlap 0.5 cm

code tex-atlas

\def\dopage{\box\mapbox}

\insertmaps

endlayout

which defines the landscape A4 layout without the navigator nor any texts. There is only

a map on the page.

Note the \insertmaps macro. Map pages are inserted at its position. This is not done

automatically because you may wish to insert some other pages before the first map page.

More advanced is the default definition of the \dopage macro:

\def\dopage{%

\vbox{\centerline{\framed{\mapbox}}

\bigskip

\line{%

\vbox to \ht\navbox{

\hbox{\size[20]\the\pagelabel

\ifpagenumbering\space(\the\pagenum)\fi

\space\size[16]\the\pagename}

\ifpagenumbering

\medskip

\hbox{\qquad\qquad

\vtop{%

\hbox to 0pt{\hss\showpointer\pointerN\hss}

\hbox to 0pt{\llap{\showpointer\pointerW\hskip0.7em}%

\raise1pt\hbox to 0pt{\hss\updownarrow\hss}%

\raise1pt\hbox to 0pt{\hss\leftrightarrow\hss}%

\rlap{\hskip0.7em\showpointer\pointerE}}

\hbox to 0pt{\hss\showpointer\pointerS\hss}

}\qquad\qquad

\vtop{

72

\def\arr{\uparrow}

\showpointerlist\pointerU

\def\arr{\downarrow}

\showpointerlist\pointerD

}

}

\fi

\vss

\scalebar

}\hss

\box\navbox

}

}

}

Using other plain TEX macros or TEX primitives it’s possible to add other features, e.g. a

different layout for odd and even pages; headers and footers; or adding a logo to each

page.

In addition to the map pages, the atlas contains additional items: title page, basic facts

about the cave, legend with used map symbols etc.

Therion automatically generates a list of used map symbols and lists of people who have

discovered, surveyed and drawn the selected part of the cave. Following token regis-

ters may be used (according to the user’s requirements before or after the \insertmaps

macro):

• \explotitle, \topotitle, \cartotitle . translated titles

• \exploteam, \topoteam, \cartoteam . participating members (according to team,

explo-team options for centreline and author option of scraps)

• \explodate, \topodate, \cartodate . corresponding dates

• \comment . is set according to map-comment option of the layout command

• \copyrights . is set according to copyright options for surveys and other objects

• \cavename . name of the exported map; set according to -title option of the exported

map

• \cavelength, \cavedepth . approximate length and depth of the displayed map

• \cavelengthtitle, \cavedepthtitle . translated labels

• \cavemaxz, \caveminz . altitude max/min value

• \thversion . current therion version

• \currentdate . current date

• \outcscode, \outcsname . output coordinate system code and name

73

• \northdir . ‘true’ or ‘grid’

• \magdecl . magnetic declination in degrees

• \gridconv . grid meridian convergence in degrees

There is a macro \atlastitlepages which combines most of the token registers men-

tioned above to get simple preformatted atlas introductory pages.

For legend displaying there are

• \iflegend . conditional; true iff legend option of the layout command was set to on

or all values

• \legendtitle . token register containing translated legend title

• \insertlegend . macro for inserting legend symbols pictures with translated descrip-

tions in the specified number of columns (according to legend-columns layout option)

• \formattedlegend . combines all three above commands to get preformatted legend

with header and symbols typeset in two74 columns if legend option is set on

North arrow and scale bar may be displayed using

• \ifnortharrow . conditional; true if map projection is plan and symbol north-arrow

is not hidden in layout

• \ifscalebar . conditional; true if the scalebar is not hidden

• \northarrow . PDF form with the north arrow

• \scalebar . PDF form with the scale bar

There is a general-purpose macro for typesetting in multiple columns75:

• \begmulti <i>, \endmulti . text between these macros is typeset in <i> columns

An example of how to create an atlas with lists of surveyors etc. followed by map pages

and with legend at the end:

code tex-atlas

\atlastitlepages

\insertmaps

\formattedlegend

To use a relative path when including another TEX file use the \inputrel macro instead

of \input.

Page layout in the map mode

In the map mode it’s possible to use a lot of predefined variables which are described in

the previous chapter:

74 Default; adjust the legend-columns layout option to get more or less of them.
75 Not to be used with map legend, where multiple columns are to be adjusted by legend-columns

layout option

74

\cavename, \comment, \copyrights, \explotitle, \topotitle, \cartotitle,

\exploteam, \topoteam, \cartoteam, \explodate, \topodate, \cartodate,

\cavelength, \cavedepth, \cavelengthtitle, \cavedepthtitle, \cavemaxz,

\caveminz, \thversion, \currentdate, \outcscode, \outcsname, \northdir,

\magdecl, \gridconv, \ifnortharrow, \ifscalebar, \northarrow, \scalebar,

\iflegend, \legendtitle, \insertlegend, \begmulti <i>, \endmulti,

\formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to define \maplayout

macro in the code tex-map section of the layout command. It should contain one or

more \legendbox invocations. The \legendbox macro has four parameters: coordinates

ranging 0–100, alignment specification (N, E, S, W, NE, SE, SW, NW or C) and the

content to be displayed.

A simple example is

\def\maplayout{

\legendbox{0}{100}{NW}{\northarrow}

}

which displays north arrow in the upper-left corner of the map sheet. The fourth pa-

rameter may also be a \loadpicture macro, which includes a picture in PDF, JPEG or

PNG format. Although it accepts a relative or absolute path, in some cases76 you need

to convert a relative path to absolute and save it for further use:

\savepath{mypath1}{../data/picture.png}

\def\maplayout{

\legendbox{100}{80}{NW}{\loadpicture{mypath1}}

}

For the user’s convenience, there is \legendcontent token register. It contains prefor-

matted cave name, north arrow, scale bar, explo/topo/carto teams, comment, copyrights

and legend. (The \legendcontent is also used in the default map layout definition:

\def\maplayout{\legendbox{0}{100}{NW}{\the\legendcontent}}).

The width of the above text may be adjusted by \legendwidth dimen register (its de-

fault value is set by legend-width layout option). The colour and size of texts in the

preformatted legend can be easily changed using \legendtextcolor, \legendtextsize,

\legendtextsectionsize and \legendtextheadersize token registers, e.g. for large

blue text:

code tex-map

\legendwidth=20cm

\legendtextcolor={\cmykcolor[0 30 50 50]}

\legendtextsize={\size[20]}

\legendtextheadersize={\size[60]}

76 If you combine multiple layouts stored in different directories.

75

It is possible to display the whole map framed by setting the \framethickness dimen

register to a positive value, e.g. 0.5mm.

Customizing text labels

Starting with the release 5.4.1 you can use fonts-setup layout option instead of the

METAPOST macro fonts_setup().

New map symbols

Therion’s layout command makes it easy to switch among various predefined map symbol

sets. If there is no such symbol or symbol set you want, it’s possible to design new map

symbols.

However, this requires knowledge of the METAPOST language, which is used for map

visualization. It’s described in

Hobby, J. D.: A User’s Manual for MetaPost, available at

https://www.tug.org/docs/metapost/mpman.pdf

The user may also benefit from comprehensive reference to the METAFONT language,

which is quite similar to METAPOST:

Knuth, D. E.: The METAFONTbook, Reading, Massachusetts, Addison-Wesley 11986

New symbols may be defined in the code metapost section of the layout command.

This makes it easy to add new symbols at the run-time. It is also possible to add

symbols permanently by compiling them into Therion executable (see the Appendix for

instructions on how to do this).

Each symbol has to have a unique name, which consists of the following items:

• one of the letters ‘p’, ‘l’, ‘a’, ‘s’ for point, line, area or special symbols, respectively;

• underscore character;

• symbol type as listed in the chapter Data format with all dashes removed;

• if the symbol has a subtype, add an underscore character and subtype;

• underscore character;

• symbol set identifier in uppercase

Example: standard name for a point ‘water-flow’ symbol with a ‘permanent’ subtype

in the ‘MY’ set is p_waterflow_permanent_MY. Standard name for user-defined symbol

types should not include symbol set identifier, e.g. p_u_bat.

Each new symbol has to be registered by a macro call

76

https://www.tug.org/docs/metapost/mpman.pdf

initsymbol("<standard-name>");

unless it’s compiled into Therion executable.

There are four predefined pens PenA (thickest) . . . PenD (thinnest), which should be

used for all drawings. For drawing and filling use thdraw and thfill commands instead

of METAPOST’s draw and fill.

The following variables are also available:77

• boolean ATTR__shotflag_splay, ATTR__shotflag_duplicate,

ATTR__shotflag_approx . set for line survey

• boolean ATTR__stationflag_splay . set true for endstations of splay shots

• boolean ATTR__scrap_centerline . set true for scraps created from centreline

• boolean ATTR__elevation . true for (extended) elevation, false for plan projection

• numeric ATTR__height . height of a pit or wall:pit

• string ATTR__id . contains current object ID

• string ATTR__survey . contains current survey name

• string ATTR__scrap . contains current scrap name

• picture ATTR__text . contains typeset text e.g. for point continuation

• string NorthDir . ‘true’ or ‘grid’

• numeric MagDecl . magnetic declination in degrees

• numeric GridConv . grid meridian convergence in degrees

If you need to include some METAPOST definitions from a file specified by a relative

path, you need to use the macro inputrel("relative/path.mp").

Point symbols

Point symbols are defined as macros using def ... enddef; commands. The majority

of point symbol definitions have four arguments: position (pair), rotation (numeric), scale

(numeric) and alignment (pair). Exceptions are section which has no visual representa-

tion; all labels, which require special treatment as described in the previous chapter, and

station which takes only one argument: position (pair).

All point symbols are drawn in local coordinates with the length unit u. Recommended

ranges are 〈−0.5u, 0.5u〉 in both axes. The symbol should be centered at the coordinates’

origin. For the final map, all drawings are transformed as specified in the T transforma-

tion variable, so it’s necessary to set this variable before drawing.

77 If names clash with Therion commands (like color), you can add an exclamation mark ‘!’ to prevent
Therion parsing the line: ! color myNewColorDef;

77

This is usually done in two steps (assume that the four arguments are P, R, S, A):

• set the U pair variable to
(

width

2
, height

2

)
of the symbol for the correct alignment. The

alignment argument A is a pair representing ratios
(

shiftx
Ux

)
and

(
shifty
Uy

)
.

(Hence aligned A means shifted (xpart A * xpart U, ypart A * ypart U).)

• set the T transformation variable

T:=identity aligned A rotated R scaled S shifted P;

For drawing and filling use thdraw and thfill commands instead of METAPOST’s draw

and fill. These automatically take care of T transformation.

An example definition may be

def p_entrance_UIS (expr P,R,S,A)=

U:=(.2u,.5u);

T:=identity aligned A rotated R scaled S shifted P;

thfill (-.2u,-.5u)--(0,.5u)--(.2u,-.5u)--cycle;

enddef;

initsymbol("p_entrance_UIS");

Line symbols

Line symbols differ from point symbols in respect that there is no local coordinate system.

Each line symbol gets the path in absolute coordinates as the first argument. Therefore

it’s necessary to set T variable to identity before drawing.

The following symbols take additional arguments:

• arrow . numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3 both ends

• contour . text: list of points which get the tick or one of −1, −2 or −3 to mark

undefined tick, tick in the middle or no tick, respectively

• section . text: list of points which get the orientation arrow or −1 to indicate no arrows

• slope . numeric: 0 no border, 1 border; text: list of (point,direction,length) triplets

Usage example:

def l_wall_bedrock_UIS (expr P) =

T:=identity;

pickup PenA;

thdraw P;

enddef;

initsymbol("l_wall_bedrock_UIS");

78

Area symbols

Areas are similar to lines: they take only one argument – path in absolute coordinates.

You may fill them in three ways:

• fill a uniform or randomised grid in a temporary picture (having dimensions bbox path)

with some point symbols; clip it according to the path and add to the currentpicture

• fill path with a solid colour

• fill path with a predefined pattern using a withpattern keyword.

Patterns are defined using the same user interface (except the patterncolor macro) as

described in the article

Bolek, P.: “METAPOST and patterns,” TUGboat, 3, XIX (1998), pp. 276–283, available

online at https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without setting of T variable

in the pattern definitions. In PDF output, all patterns are uncolored—this means that

any colour information specified in the pattern definition is ignored and the colour is

assigned later, when the pattern is used (using symbol-colour layout option).

An example of how to define and use patterns:

beginpattern(pattern_water_UIS);

draw origin--10up withpen pensquare scaled (0.02u);

patternxstep(.18u);

patterntransform(identity rotated 45);

endpattern;

def a_water_UIS (expr p) =

T:=identity;

thclean p;

thfill p withpattern pattern_water_UIS;

enddef;

initsymbol("a_water_UIS");

Special symbols

There are currently two special symbols: scale bar and north arrow. Both are experi-

mental and subject to change.

79

https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

1. When a distinguished but elderly scientist states that something is

possible, he is almost certainly right. When he states that something

is impossible, he is very probably wrong.

2. The only way of discovering the limits of the possible is to venture a

little way past them into the impossible.

3. Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke, 

Appendix

Compilation

Installing the dependencies

If you want to compile Therion from source code and run it, you need (first three are

required only during compilation):

• GNU C/C++ compiler

• GNU make

• Perl

• Python 3

• PROJ library (https://proj.org/). Supported versions are: v4: 4.9.3; v5: 5.1.0 and

newer; v6: 6.2.1 and newer; v7: 7.0.0 and newer.

• Tcl/Tk 8.4.3 and newer (https://www.tcl.tk) with BWidget widget set

(https://sourceforge.net/projects/tcllib/) and optionally tkImg extension

(https://sourceforge.net/projects/tkimg/).

• TEX distribution with at least TEX with Plain format, recent pdfTEX, and METAPOST

(https://www.tug.org).

• LCDF Typetools package (https://www.lcdf.org/type/)

• ImageMagick distribution with convert and identify utilities, if you want to use warping

of survey sketches.

• ghostscript if you want to create calibrated images from georeferenced PDF maps.

To compile Loch, you need

• freetype 2 and newer; pkg-config freetype2 must work

• wxWidgets 2.6 and newer; wx-config must work

• VTK 5.0 and newer

• libjpeg, libpng, zlib

80

https://proj.org/
https://www.tcl.tk
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tkimg/
https://www.tug.org
https://www.lcdf.org/type/

All programs (with the exception of BWidget and tkImg package) are usually included in

Linux, Unix or MacOS X distributions. For Windows consider using MinGW and MSYS2

(https://www.msys2.org/). It’s a distribution of GNU utilities with GNU make and

GCC. (BTW, why not to use precompiled Windows version?)

Here is an example for installing dependencies to compile Therion on Ubuntu 18.04

or 20.04: sudo apt install bwidget cmake gcc ghostscript imagemagick lcdf-

typetools libfreetype6-dev libjpeg-dev libpng-dev libproj-dev libtk-img-dev

libvtk7-dev libwxgtk3.0-gtk3-dev tcl-dev texlive-binaries texlive-metapost

zlib1g-dev.

Using CMake

Unpack the source distribution therion-6.*.tar.gz and create a separate directory for 6.0

the build, e.g.:

• cd therion && mkdir build && cd build

• cmake [parameters] ..

• make -j4

CMake parameters

Here is a selection of parameters which can be used with cmake:

• -G <generator> . specify the generator, e.g. -G Ninja to use Ninja build system

instead of make, or -G "MSYS Makefiles" to build using make under MSYS2

• -DUSE_BUNDLED_SHAPELIB=OFF . use the system Shapelib library

• -DUSE_BUNDLED_CATCH2=OFF . use the system Catch2 library

• -DUSE_BUNDLED_FMT=OFF . use the system fmt library

• -DECM_ENABLE_SANITIZERS=<option> . use runtime sanitizers, relevant options:

address – detects invalid memory accesses, use-after-free, double free, memory leaks,

useful for debugging

undefined – detects undefined behavior, for example use of uninitialized values

• -DCMAKE_BUILD_TYPE=<option> . build type, relevant options:

Debug – compile with debug symbols and asserts

Release – compile with optimizations

RelWithDebInfo – compile with debug symbols and optimizations, useful for profiling

and debugging

• -DTHBOOK_FORMAT=<option> . set the output size of the Therion book (most of the

images are omitted in smaller sizes); relevant options:

81

https://www.msys2.org/

0 – A4 portrait

1 – small screen portrait (some lines and images don’t fit)

2 – small screen landscape

3 – ebook reader optimized

The following cmake components can be used to selectively install a part of the package:

th-runtime, loch-runtime, th-docs, loch-docs.

Legacy approach: using make

• unpack the source distribution therion-6.*.tar.gz

• cd therion

• make config-macosx or make config-win32, if you use MacOS X or Windows, re-

spectively

• make

• sudo make install

Make parameters

Therion’s makefile may take some optional parameters.

• config-linux, config-macosx, config-win32 . configure Therion for a specific plat-

form. Linux is a default.

• config-release, config-oxygen, config-ozone . set optimization level for C++

compiler (none, -O2 and -O3)

• config-debug . useful before debugging the program

• install . install Therion

• clean . delete all temporary files

Hacker’s guide

Cross-compilation for Windows

Therion supports compilation of Win32/Win64 executables in Linux using MXE cross

compiler (http://mxe.cc).

• install the following static/win32 packages (i686-w64-mingw32.static-*) or static/win64

packages (x86-64-w64-mingw32.static-*) to the directory /usr/lib/mxe/: binutils,

bzip2, expat, freetype-bootstrap, gcc, gettext, glib, harfbuzz, jpeg, libiconv, libpng,

proj, tiff, vtk, wxwidgets, xz, zlib.

• modify PATH: export PATH=/usr/lib/mxe/usr/bin:$PATH

• use CMake or the legacy approach (cd therion && make config-win32cross &&

make) to build Therion

82

http://mxe.cc

See therion/.github/workflows/ for detailed examples of building Therion on multiple

platforms.

Adding new translations

Therion supports translation of map labels. Suppose you want to add a new language

xx.

• run ‘perl process.pl export xx’ in the ‘thlang’ Therion source subdirectory. This

creates a file texts_xx.txt. This file is UTF-8 encoded.

• edit the texts_xx.txt file. Add your translations at lines beginning with ‘xx:’.

• run make update

• compile Therion

Adding new encodings

Although UTF-8 Unicode encoding covers all characters which Therion is able to process,

it may be inconvenient to use it. In that case it’s possible to add support for any 8-bit

encoding for text input files. Copy a translation file to the thchencdata directory; add its

name to ‘ifiles’ hash in the beginning of the Perl script generate.pl; run it and recompile

Therion.

The translation file should contain two hexadecimal values of a character (first one in

the 8-bit encoding, second one in Unicode) in each line. Possible comments follow the ‘#’

character.

Adding new TEX encodings

It’s easy to add new encodings for 2D map output.78 Copy an appropriate encoding

mapping file with an *.enc extension to the texenc/encodings, run the Perl script

mktexenc.pl located in the texenc directory and compile Therion.

Therion uses the same encoding files as afm2tfm program from the TEX distribution,

which has the same format as an encoding vector in a PostScript font. You may find

more details in the chapter 6.3.1.5 Encoding file format in the documentation to Dvips

program.

Generating new TEX and METAPOST headers

Therion uses TEX and METAPOST for 2D map visualization and typesetting. Predefined

macros are compiled into the Therion executable and are copied to the working directory

just before running METAPOST and TEX (unless the --use-extern-libs option is used).

Layout command makes it possible to modify some macros in the configuration file at

the run-time.

78 This section applies to old-style font selection using tex-fonts command in the initialization file
and is obsolete when using pdf-fonts command.

83

However, it’s possible to make permanent changes to the macro files. After modifying the

files in the mpost and tex directories it’s necessary to run Perl scripts genmpost.pl and

gentex.pl, which generate C++ header files, and compile Therion executable again.

Updating the geomagnetic model

Therion uses the IGRF model to calculate the magnetic declination. Download the model

in a txt format from https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html and save it in

the geomag/ directory (e.g. igrfXYcoeffs.txt). Run ./igrf2c.py igrfXYcoeffs.txt

which creates thgeomagdata.h in the Therion source directory and recompile Therion.

To test the model, extract the file sample_out_IGRFXY.txt, which is included in the Geo-

mag distribution available on the same web page. Put it into the geomag/test/ directory,

run ./build.sh sample_out_IGRFXY.txt and check the lines with an exclamation mark

in the output.

Environment variables

Therion reads following environment variables:

• THERION . [not required] search path for (x)therion.ini file(s)

• HOME (HOMEDRIVE + HOMEPATH on WinXP) . [not required, but usually present on your

system] search path for (x)therion.ini file(s)

• TEMP, TMP . system temporary directory, where Therion stores temporary files (in a

directory named thPID, where PID is a process ID), unless tmp-path is specified

in the initialization file.

Consult the documentation of your OS how to set them.

Initialization files

Therion’s and XTherion’s system dependent settings are specified in the file therion.ini

or xtherion.ini, respectively. They are searched for in the following directories:

• on UNIX: ., $THERION, $HOME/.therion, /etc, /usr/etc, /usr/local/etc

• on Windows: ., $THERION, $HOME\.therion, <Therion-installation-directory>,

C:\WINDOWS, C:\WINNT, C:\Program Files\Therion

Therion

If no file is found Therion uses its default settings. If you want to list them, use --print-

init-file option. The initialization file is read like any other therion file. (Empty lines

84

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

or lines starting with ‘#’ are ignored; lines ending with a backslash continue on next line.)

Currently supported initialization commands follow.

• loop-closure <therion/survex>

By default, survex is used if present, otherwise therion.

• encoding-default <encoding-name>

Set the default output encoding (currently unused).

• encoding-sql <encoding-name>

Set the default output encoding for SQL export.

• language <xx[_YY]>

Default output language. See the copyright page for the list of available languages.

• units <metric/imperial>

Set default units.

• mpost-path <file-path>

Set the full path to a METAPOST executable if Therion can’t find it (“mpost” is the

default).

• mpost-options <string>

Set METAPOST options.

• pdftex-path <file-path>

Set the full path to a pdfTEX executable if Therion can’t find it (“pdftex” is the

default).

• identify-path <file-path>

Set the full path to ImageMagick’s identify executable if Therion can’t find it (“iden-

tify” is the default).

• convert-path <file-path>

Set the full path to ImageMagick’s convert executable if Therion can’t find it (“con-

vert” is the default).

• source-path <directory>

Path to data and configuration files. Used mostly for system-wide grades and layout

definitions.

• tmp-path <directory>

Path where temporary directory should be created.

• tmp-remove <OS command>

System command to delete files from the temporary directory.

85

• tex-env <on/off>

[Works on Windows only.] When set to off (default), Therion temporarily clears all

environment variables related to TEX. Useful if there is other TEXdistribution installed

on your system which had set-up any environment variables, which could confuse TEX

and METAPOST programs supplied in Therion for Windows distribution.

Set to on if you use other TEX distribution for maps processing.

• text <language ID> <therion text> <my text>

Using this option you can change any default therion text translation in output. For

list of therion texts and available translations, see thlang/texts.txt file.

• cs-def <id> <proj4def>

Define a new coordinate system <id> using Proj4 syntax.

• cs-trans <cs1> <cs2> <proj-pipeline>6.1.0

Define a transforamation pipeline between two coordinate systems.79 Both cs1 and

cs2 can be lists of aliases enclosed in brackets.

Therion contains a built-in database of transformation pipelines.80 You can override

any built-in definition either by redefining the pipeline using cs-trans or make it

ignored by using an empty string in the cs-trans definition.

If the pipeline references transformations grids which are not installed locally, Therion

attempts to download them from cdn.proj.org if proj-missing-grid option is set

to download (otherwise it prints an error message and stops).

This option is ignored if Therion is using PROJ v6 or older.

Example: cs-trans [jtsk epsg:5513] [etrs34 epsg:25834] "+proj=pipeline

+step +inv +proj=krovak +axis=wsu +lat_0=49.5 +lon_0=24.8333333333333

+alpha=30.2881397527778 +k=0.9999 +x_0=0 +y_0=0 +ellps=bessel +step

+inv +proj=hgridshift +grids=sk_gku_JTSK03_to_JTSK.tif +step +proj=push

+v_3 +step +proj=cart +ellps=bessel +step +proj=helmert +x=485.021

+y=169.465 +z=483.839 +rx=-7.786342 +ry=-4.397554 +rz=-4.102655 +s=0

+convention=coordinate_frame +step +inv +proj=cart +ellps=GRS80 +step

+proj=pop +v_3 +step +proj=utm +zone=34 +ellps=GRS80"

• proj-auto <on/off>5.5

If set on, let PROJ v6+ decide which transformation between coordinate systems is

optimal.81 The selected transformations are listed in the log file. It is recommended

to specify coordinate systems using the EPSG codes directly (e.g. EPSG:4258).

79 See https://proj.org/usage/transformation.html for details of pipelines definition.
80 Mostly for JTSK to ETRS89 transformations. The definitions are in the thcsdata.tcl file in the

source code, proj transformations variable.
81 In this case the function proj create crs to crs() is used. Otherwise Therion calls proj create()

function in the PROJ library.

86

cdn.proj.org
https://proj.org/usage/transformation.html

If set off or if Therion uses PROJ older than v6, the source coordinates are first

transformed to wgs-84, then from wgs-84 to the target coordinate system. This might

result in a suboptimal precision.

The default setting is on.This option is ignored for those pairs of coordinate systems 6.1.0

which have a transformation pipeline defined (see cs-trans).

• proj-missing-grid <ignore/warn/fail/cache/download> 5.5.1

Set missing transformation grids handling if proj-auto is on or a custom transforma-

tion pipeline in cs-trans references such grids. The grids are used to achieve a better

transformation precision between some coordinate systems.

For cs-trans pipelines, only download tries to download the grid; all other options are

equivalent to fail. If proj-auto is used to find the best transformation, the following

applies:

ignore silently lets Proj to choose other transformation which doesn’t use the missing

grid(s); this usually leads to decreased transformation accuracy (say metres instead of

centimetres). See the log file for a list of the used transformations and their precisions.

warn behaves like ignore, but prints warnings about missing grids (the download links

are usually displayed as well).82

fail stops after the first missing grid is detected and displays the download link.

cache enables the network connectivity and lets Proj to download the missing parts

of grids from the Internet. The information is stored in a local cache.83 As only parts

of grids covering the current area are downloaded, it’s potentially faster and less space

consuming then download. The downside is that the local cache is not used by Proj if

the network is disabled (in Therion you have to use the cache mode to use the local

cache).

download temporarily enables the network connectivity and lets Proj to download the

missing grids from the Internet. The grids are used in subsequent runs (in any mode).

The default setting is download.The option proj-missing-grid is ignored if proj- 6.1.0

auto is off or Proj v5 or older is used. If Proj v6 is used by Therion, the settings

cache and download are equivalent to fail, as the network connectivity is a feature

of Proj v7 and later.

• pdf-fonts <rm> <it> <bf> <ss> <si>

Set-up fonts to be used in PDF maps. The command has to be followed by paths

specifying where regular, italic, bold, sans-serif and sans-serif oblique fonts are located

in your system. TrueType and OpenType fonts are supported.

Therion requires LCDF Typetools to be installed on your system to use this command.

Example:

82 See https://proj.org/resource files.html for the instructions where to put the downloaded
grids.

83 See https://proj.org/usage/network.html

87

https://proj.org/resourceunhbox voidb@x kern .06em vbox {hrule width.3em}files.html
https://proj.org/usage/network.html

pdf-fonts "/usr/share/fonts/Serif.ttf" \

"/usr/share/fonts/Serif-Italic.ttf" \

"/usr/share/fonts/Serif-Bold.ttf" \

"/usr/share/fonts/Sans.ttf" \

"/usr/share/fonts/Sans-Oblique.ttf"

• otf2pfb <on/off>

When set to on (default), OpenType fonts used in pdf-fonts are converted to PFB

fonts, if they are PostScript-based. Some information is lost in the PFB format, but

there is advantage that pdfTEX can embed subset of PFB fonts (in contrast with

OpenType fonts which must be fully embedded).

• tex-fonts <encoding> <rm> <it> <bf> <ss> <si>

Original and more complicated way to set-up fonts for PDF maps. You need to explic-

itly specify encoding (maximum 256 characters from the font that will be used). The

list of currently supported encodings gives the --print-tex-encodings command line

option. The same encoding must be used while generating TEX metrics (*.tfm files)

for those fonts (e.g. with the afm2tfm program) and this encoding must be explicitly

given also in the pdfTEX’s map file. The only exception is the base set of Computer

Modern fonts, which use ‘raw’ encoding. This encoding doesn’t need to be specified in

the pdfTEX’s map file.

Encoding has to be followed by five font specifications for regular, italic, bold, sans-

serif and sans-serif oblique styles. Default setting is tex-fonts raw cmr10 cmti10

cmbx10 cmss10 cmssi10

Example how to use other fonts (e.g. TrueType Palatino in xl2 (an encoding derived

from ISO8859-2) encoding). Run:

ttf2afm -e xl2.enc -o palatino.afm palatino.ttf

afm2tfm palatino.afm -u -v vpalatino -T xl2.enc

vptovf vpalatino.vpl vpalatino.vf vpalatino.tfm

You get files vpalatino.vf, vpalatino.tfm and palatino.tfm. Add the line

palatino <xl2.enc <palatino.ttf

to the pdfTEX’s map file. The same should be done for the italic and bold faces and

corresponding sans-serif and sans-serif-oblique fonts. If you’re lazy try

tex-fonts xl2 palatino palatino palatino palatino palatino

(We should use actually virtual font vpalatino instead of palatino, which contains

no kerning or ligatures, but pdfTEX doesn’t support \pdfincludechars command on

virtual fonts. To be improved.)

If you want to add some unsupported encodings, read the chapter Compilation /

Hacker’s guide.

88

• tex-fonts-optional <encoding> <rm> <it> <bf> <ss> <si>

Similar to tex-fonts, but tests if the TEX fonts are installed in the system. It does

nothing if any of the specified fonts is not present.

This setting is used by default for Czech/Slovak and cyrillic fonts to avoid METAPOST

errors on systems without these fonts present.

As the test takes some time (pdfTeX instance is run), you might disable the default

behaviour completely by setting tex-fonts in the INI file.

• tex-refs-registers <on/off>

Switch between using count registers and macros to store references to graphical objects

in TEX. Each approach has some advantages, see the section Limitations.

XTherion

Initialization file for XTherion is actually a Tcl script evaluated when XTherion starts.

The file is commented; see the comments for details.

Limitations

• scrap size .

METAPOST in the default (‘scaled’) mode: ≈ 2.8× 2.8 m in the output scale

METAPOST in the ‘double’ mode:84 practically no limit85

• page size .

PDF map or atlas: ≈ 5× 5 m (pdfTEX limit)

SVG map: limits depend on the viewing application

• scraps count .

METAPOST in the scaled mode: 4(scraps + sections) < 4000

METAPOST in the ‘double’ mode: practically no limit

TEX limit in registers mode:86 2×pages+ images+patterns+6(scraps+sections) <

32 500 when using pdfTEX (or approximately 65 000 when using LuaTEX87)

84 To run METAPOST in the ‘double’ mode, set mpost-options "-numbersystem=double" in the
initialization file. It’s not recommended to use arbitrary-precision modes ‘decimal’ and ‘binary’, as
there are still bugs in their implementation and they are much slower than the ‘double’ mode. You
need to use METAPOST newer than 2.00 to use this mode without issues.

85 It’s high enough to be reached.
86 This is the default approach, in which the count registers are used to store referenced to the graphic

objects.
87 To use LuaTEX, set pdftex-path "luatex" in the initialization file.

89

TEX limit in macro mode:88 limited only by memory available to TEX89

Example data

Following simple example illustrates basic usage of Therion commands:

encoding utf-8

survey main -title "Test cave"

survey first

centreline

units compass grad

data normal from to compass clino length

1 2 100 -5 10

endcentreline

endsurvey

survey second -declination [3 deg]

centreline

calibrate length 0 0.96

data normal from to compass length clino

1 2 0 10 +10

endcentreline

endsurvey

centreline

equate 2@first 1@second

endcentreline

scraps are usually in separate *.th2 files

scrap s1 -author 2004 "Therion team"

point 763 746 station -name 2@second

point 702 430 station -name 2@first

point 352 469 station -name 1@first

point 675 585 air-draught -orientation 240 -scale large

line wall -close on

88 Instead of using count registers, each reference is stored in a separate macro. This mode is activated
by setting tex-refs-registers off in the initialization file.

89 Note, that you need to modify texmf.cnf configuration file in your TEX distribution to change the
limits.

90

287 475

281 354 687 331 755 367

981 486 846 879 683 739

476 561 293 611 287 475

endline

endscrap

map m1 -title "Test map"

s1

endmap

endsurvey

Corresponding configuration file could be:

encoding utf-8

source test

layout l1

scale 1 100

layers off

endlayout

select m1@main

export model -fmt survex

export map -layout l1

If you save data file as ‘test.th’ and configuration file as ‘thconfig’ you may process them

with Therion.

History

• 1999

Oct: first concrete ideas

Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map in PostScript format for the first time (32 kB

of Perl and 7 kB of METAPOST and TEX source code). The map warping model

was substantially different from the current one (positions of features were relative

to a particular survey shot, not to positions of all stations in a scrap). This version

already included some interesting features such as transformation functions which

91

allowed user specification of the input format for survey data, or splitting large

maps to multiple sheets.

Dec 30: the first web page (with data examples but without source code)

• 2000

Jan: xthedit (Tcl/Tk), a graphical front-end for Therion

Feb 18: start of reprogramming (Perl)

Apr 1: the first hyperlinked PDF cave map / atlas

Aug: experiments with PDF, pdfTEX and METAPOST

• 2001

Nov: start of reimplementation from scratch: Therion (C++ with some Perl scripts

inherited from the previous version); notion of a scrap; interactive 2D map editor

ThEdit as a replacement of xthedit (Delphi)

Dec: ThEdit exports simple map for the first time

• 2002

Mar: Therion 0.1 — Therion is able to process survey data (centreline) of the Cave of

Dead Bats. XTherion, text editor designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 — Therion compiles simple map (consisting of two scraps) for the

first time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of ThEdit)

Sep: Therion compiles first real and complex map of a cave. XTherion extended to

compiler.

• 2003

Mar: the first version of The Therion Book finished

Apr: Therion included in Debian GNU/Linux

Jun: all Perl scripts rewritten in C++, Therion is one executable program now (al-

though using Survex and TEX)

• 2004

Mar: Therion 0.3 — Therion exports 3D model created from 2D maps. Loop closure

algorithm included into Therion.

• 2006

Oct: Therion 0.4 — New 3D viewer (Loch).

• 2007

Feb: Therion 0.5 — Support for bitmap sketches morphing.

• 2016

Dec: GitHub repository.

92

Future

Although Therion is already used for map production, there are a lot of new features to

be implemented:

General

• loop closure information in SQL

2D maps

• complete the predefined symbol sets

• generate registers for atlas

• use MPlib instead of METAPOST

3D models

• improve passage walls modeling

XTherion

• improve 2D editing capabilities

Loch

• colour schemes

• survey tree for selecting sub-surveys to display

• spatial filtering (e.g. clipping by planes)

• support for multiple surfaces

Labyrinth

• completely new GUI in the far future (see https://labyrinth.speleo.sk)

93

https://labyrinth.speleo.sk

	Table of Contents
	Introduction
	Creating data files
	Processing data
	What do we get
	Changing layout of PDF maps
	Appendix

