
OTF Profile and OTF Shrink – Automatic Substitution of Similar

Process Traces

Andreas Knüpfer, Matthias Jurenz, Robert Dietrich, Guido Juckeland, André Grötzsch

November 27, 2012

1 Overview

This document describes an approach to automatically classify similarities in parallel trace processes and
exploit them for data reduction. This is particularly promising for massively-parallel traces. The current
tool infrastructure is designed for a step-by-step evaluation of this approach and might be adapted in the
future according to the lessons learned.

Terminology: In this document, the term trace processes denotes processes in an event trace which is
under investigation. In contrast, the term analysis processes denotes the processes in a parallel analysis
tool which handle the data in the trace processes.

2 Command Line Tools

The approach uses the following two command line tools:

First, otfprofile[-mpi] is collecting summarized profile information where the MPI-parallel version of
this tool uses n analysis processes to collect profile data for m ≥ n trace processes.

By default, it creates a summary report as LATEXor PDF document. As an alternative mode, it can
perform a K-means clustering based on the per-process profile data, see Section 3 for more details.

otfprofile[-mpi] - generate a profile of a trace in LaTeX format.

Syntax: otfprofile[-mpi] [options] <input file name>

options:

-h, --help show this help message

-V show OTF version

-v increase output verbosity

(can be used more than once)

-p show progress

-f <n> max. number of filehandles available per rank

(default: 50)

-b <size> set buffersize of the reader

(default: 1048576)

-o <prefix> specify the prefix of output file(s)

(default: result)

-g <n> max. number of process groups in LaTeX output

(range: 1-16, default: 16)

-c do additional K-means clustering of processes/threads

-m <mapfile> write process mapping to <mapfile> (implies -c)

(default: result.map)

-s <prefix> call otfshrink to apply the cluster mapping to

input trace and produce a new trace named <prefix>

1

with symbolic links to the original (implies -c)

--stat read only summarized information, no events

--[no]csv enable/disable producing CSV output

(default: disabled)

--[no]tex enable/disable producing LaTeX output

(default: enabled)

--[no]pdf enable/disable producing PDF output

(implies --tex if enabled, default: enabled)

Second, otfshrink is able to apply given reduction instructions to an existing event trace. With the
-s switch it will be called from otfprofile[-mpi] automatically. See Section 5 for the details and
representation of the reduced data.

otfshrink - creates a new otf file that only includes

specified processes

options:

-h, --help show this help message

-V show OTF version

-i <file> specify the input trace file

-o <file> specify the output file

-l "<list>" a space-separated list of processes in quotes

to enable, i.e. keep in the copy,

e.g. ’-l "1 2 3 4 8 5"’

-v invert setting from ’-l’,

i.e. deactivate/exclude listed processes

-m "<list>" map all listed processes to one representative

and remove all remaining ones

first process in list is the representative,

must not be mixed with ’-l’ and ’-v’

-f <file> read multiple ’-m’ lists from the given file

one list/group per line, empty lines allowed

-s <mode> simulation mode: display all selected

processes, no files are created,

display modes: (l)ist, (r)ange or (t)able

defaut: range

-p <file> displays all processes with name and id

input file without ".otf"

Multiple instances of ’-l’, ’-m’, and ’-f’ may be used

For both tools, see also the general documentation at ./docu/tools/otftools.pdf.

3 K-means Clustering of Properties of Process Traces

The otfprofile[-mpi] tool collects profile information about subroutine calls on parallel trace processes.
This includes the number of calls and the total exclusive runtime per subroutine. Both are stored in two
feature vectors per process p: vector Cp contains the number of calls per subroutine, vector Tp contains
the exclusive runtime sum per subroutine. All trace processes use the same enumeration of subroutines to
create the vectors. The vectors are the input for a two-stage K-means clustering of trace processes which
is performed by otfprofile[-mpi].

In the first stage, the processes p ∈ P are divided into groups Gj with identical Cp in every group. A
differing number of calls for at least one subroutine is an indicator for differing behavior. This happens
for example when the master rank performs additional work compared to the regular parallel tasks of all
ranks.

In the second step, the processes in each group p ∈ Gj are subject to a k-means clustering according to
the runtime vectors Tp. Groups with ≤ 5 members are ignored. The pre-specified number of clusters is

2

min(n/3, 16) with n = |Gj |. This looks at the runtime distribution in the TP vectors for all processes
in a group and computes a clustering with (heuristically) maximum similarity according to the K-means
algorithm. The result is written to the file result.map unless the -m command line switch is used.

4 Complete-linkage Clustering

Since for K-means clustering the number of clusters is required, what is in general hard to determine
automatically, the results are often unsatisfying. Hence the Complete-linkage method is provided as
an alternative approach by the command line option --cluster CLINKAGE. In contrast to the K-means
clustering method, this approach doesn’t require any knowledge of the number of the resulting clusters,
since this is determined by the algorithm.

Using the same input data as mentioned in the previous section, the clustering is done in an agglomer-
ative hierarchical manner. By means of Complete-linkage, the distance of two clusters is defined by the
maximum distance between a pair of objects taken from the first resp. the second cluster. Thus the
resulting clusters are rather compact, i. e. their diameter doesn’t go beyond a chosen threshold. With
this threshold the quality of the resulting clusters can be influenced. The choice of the threshold is made
by the command line parameter -q in a normalised manner: 0 ≤ q ≤ 1. A maximum diameter of zero
means that only processes with equal exclusive runtimes per subroutine will end up in a cluster. Contrary,
a maximum diameter of one will force all trace processes into one single cluster. A reasonable value for
q is something in-between (q = 0.1 per default). As with K-means clustering, the result is written to the
file result.map unless the -m command line option is used.

As a downside of the Complete-linkage method we have to mention that the quadratic complexity of the
algorithm in time and space suggests to be careful when applying this method for a very large number
of processes. The smartest way to handle appearing problems with time or memory is to decrease q -
the maximum diameter of clusters as described above. This results in less processes to be considered
for clustering and thus less memory and time is required to compute the clusters. This will be done
automatically in a future release.
An additional option to handle such problems is to consider only trace processes with identical number
of calls per subroutine for clustering as described as stage one in the previous section. This is not done
by default but can be forced by the command line switch -H.

5 Reduction of Event Traces by Substitution of Process Traces

The resulting clustering from otfprofile[-mpi] can be fed into the existing otfshrink tool to produce
a reduced version of the input trace. From every K-means cluster one representing process (the one with
the lowest ID) is designated as a substitute for all remaining members of the cluster which are discarded.

Modifications on the File Level

OTF is a format with multiple files per event trace which are handled differently in otfprofile[-mpi].
The master file or anchor file <prefix>.otf is newly generated and references only the represent-
ing processes (as well as individual processes not assigned to a cluster). The global definition file
<prefix>.0.def[.z] is also newly generated and modified. Both newly created files are usually very
small in comparison to the event stream files <prefix>.<streamid>.events[.z] . Event stream files
contain event records for one or several processes and are usually much larger than the anchor and defi-
nition files.

If an event stream of the input trace contains at least one process that remains in the output trace, then
a symbolic link <new prefix>.<streamid>.events[.z] is created. Thus, the data is available in the
reduced trace without the need for extensive copy operations. However, independent renaming or moving
of the input and output traces is limited. Since re-creating the reduced trace with the stored mapping file
from otfprofile[-mpi] is a quick operation, this a comparatively small limitation.

3

Modifications on the Record Format Level

In the mapping mode (specified with -m) the otfshrink tool performs a number of modifications to
definition records but not to event records.

First of all, a special TraceContainsSubstitutes definition record is inserted in the very beginning as a
flag that a trace contains substitute information and differs from standard traces.

Furthermore, all process definition records of substituted processes are removed. Directly before the
definition records of remaining processes, a process substitution record is written which enumerates all
other processes to be represented by a given process. (The representing processes are included in the list
for convenience).

All other definition records that reference IDs of substituted processes are not modified, because this would
complicate the decompression. For example, process group definitions representing MPI communicators
are not modified and still contain substituted process. Analysis tools that read traces with substitution
information but without decompression need to tolerate invalid process tokens.

6 Further Handling of Reduced Event Traces by Analysis Tools

For the analysis of substitution-mode traces by consumer tools, there are two scenarios.

In the first scenario, the consumer explicitly considers substitution information and reads the reduced
trace. By means of the substitution definition records, it s able to transfer observations based on the
representing processes to the substituted processes which are assumed to be similar enough (TM). This
scenario directly passes on the advantage of the reduced data volume to the consumer.

In the second scenario, the consumer relies on the OTF library to decompress the reduced representation.
For this, OTF provides an special set of call back handlers (SubstitutionHandlers) which the consumer
has to register to the OTF reader object. The SubstitutionHandlers will deliver the uncompressed
information to another set of call back handlers that pass it to the consumer like in the standard OTF
read mode.

The SubstitutionHandlers will consume the process substitution definitions and store them internally.
In the following, all records for representing processes are multiplied – they are delivered to the consumer
several times on behalf of the representing process and on behalf of all processes represented by it. Assumed
the representing processes are similar enough, this recreates the original trace in a similar way. However,
it also restores the original data size. Therefore, the read speed may increase but the over-all data volume
delivered to the consumer is the same as for the original trace.

7 Example

An example with a trace of NAS parallel benchmarks BT with 64 ranks is shown below. The command

mpirun -np 4 otfprofile-mpi -p --nopdf nas_bt_64.otf -s reduced

produces the following mapping:

3 : 4 5 6 23

9 : 17 22 25

11 : 12 13 46

14 : 52

15 : 59 60 61 63

18 : 24 26 32 34 40 48

19 : 27 38

20 : 31 39 45

21 : 28 35 53 54 55

29 : 33 36 41 62

30 : 37 44

43 : 51

4

The processes at the beginning of each line represent all processes after the colon. All missing process IDs
remain separate.

In the present working directory, it produces the situation shown in Figure 1. The reduced version uses
symbolic links to selected files of the original and adds almost nothing to the total storage size of this
direcrtory.

In Figure 2, both traces are shown in Vampir. While the original (Figure 2 top) reflects the regular
visualization, the reduced counterpart (Figure 2 bottom) has random gaps which produce a irregular
impression. Note that processes representing substituted processes are marked with a #<number> in their
name, where the number shows the size of their cluster.

Future versions of Vampir will be able to restore the regular visualization by interpreting the substitute
information and filling the gaps with duplicated information from the representing processes.

8 Future Extensions

Future extensions to this experimental approach will include more statistical input data for the clustering
process, e.g. MPI message sizes, I/O data volumes, etc. This will help to differentiate otherwise similar
behavior of processes.

In addition, adaptive heuristics for the number of K-means clusters will be integrated to improve the
simple static number of clusters used so far.

5

total 94M
drwxr-xr-x 2 12K .
drwxr-xr-x 26 4.0K ..
-rw-r--r-- 1 4.3K nas_bt_64.0.def.z
-rw-r--r-- 1 29 nas_bt_64.0.marker.z
-rw-r--r-- 1 1.5M nas_bt_64.10.events.z
-rw-r--r-- 1 1.5M nas_bt_64.11.events.z
-rw-r--r-- 1 1.5M nas_bt_64.12.events.z
-rw-r--r-- 1 1.5M nas_bt_64.13.events.z
-rw-r--r-- 1 1.5M nas_bt_64.14.events.z
-rw-r--r-- 1 1.5M nas_bt_64.15.events.z
-rw-r--r-- 1 1.5M nas_bt_64.16.events.z
-rw-r--r-- 1 1.5M nas_bt_64.17.events.z
-rw-r--r-- 1 1.5M nas_bt_64.18.events.z
-rw-r--r-- 1 1.5M nas_bt_64.19.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1a.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1b.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1c.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1d.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1e.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1.events.z
-rw-r--r-- 1 1.5M nas_bt_64.1f.events.z
-rw-r--r-- 1 1.5M nas_bt_64.20.events.z
-rw-r--r-- 1 1.5M nas_bt_64.21.events.z
-rw-r--r-- 1 1.5M nas_bt_64.22.events.z

<skip some>

-rw-r--r-- 1 1.5M nas_bt_64.3d.events.z
-rw-r--r-- 1 1.5M nas_bt_64.3e.events.z
-rw-r--r-- 1 1.5M nas_bt_64.3.events.z
-rw-r--r-- 1 1.5M nas_bt_64.3f.events.z
-rw-r--r-- 1 1.5M nas_bt_64.40.events.z
-rw-r--r-- 1 1.5M nas_bt_64.4.events.z
-rw-r--r-- 1 1.5M nas_bt_64.5.events.z
-rw-r--r-- 1 1.5M nas_bt_64.6.events.z
-rw-r--r-- 1 1.5M nas_bt_64.7.events.z
-rw-r--r-- 1 1.5M nas_bt_64.8.events.z
-rw-r--r-- 1 1.5M nas_bt_64.9.events.z
-rw-r--r-- 1 1.5M nas_bt_64.a.events.z
-rw-r--r-- 1 1.5M nas_bt_64.b.events.z
-rw-r--r-- 1 1.5M nas_bt_64.c.events.z
-rw-r--r-- 1 1.5M nas_bt_64.d.events.z
-rw-r--r-- 1 1.5M nas_bt_64.e.events.z
-rw-r--r-- 1 1.5M nas_bt_64.f.events.z
-rw-r--r-- 1 354 nas_bt_64.otf
-rw-r--r-- 1 13K reduced.0.def
lrwxrwxrwx 1 54 reduced.10.events.z -> nas_bt_64.10.events.z
lrwxrwxrwx 1 54 reduced.12.events.z -> nas_bt_64.12.events.z
lrwxrwxrwx 1 54 reduced.13.events.z -> nas_bt_64.13.events.z
lrwxrwxrwx 1 54 reduced.14.events.z -> nas_bt_64.14.events.z
lrwxrwxrwx 1 54 reduced.15.events.z -> nas_bt_64.15.events.z
lrwxrwxrwx 1 54 reduced.1d.events.z -> nas_bt_64.1d.events.z
lrwxrwxrwx 1 54 reduced.1e.events.z -> nas_bt_64.1e.events.z
lrwxrwxrwx 1 53 reduced.1.events.z -> nas_bt_64.1.events.z
lrwxrwxrwx 1 54 reduced.2a.events.z -> nas_bt_64.2a.events.z
lrwxrwxrwx 1 54 reduced.2b.events.z -> nas_bt_64.2b.events.z
lrwxrwxrwx 1 53 reduced.2.events.z -> nas_bt_64.2.events.z
lrwxrwxrwx 1 54 reduced.2f.events.z -> nas_bt_64.2f.events.z
lrwxrwxrwx 1 54 reduced.31.events.z -> nas_bt_64.31.events.z
lrwxrwxrwx 1 54 reduced.32.events.z -> nas_bt_64.32.events.z
lrwxrwxrwx 1 54 reduced.38.events.z -> nas_bt_64.38.events.z
lrwxrwxrwx 1 54 reduced.39.events.z -> nas_bt_64.39.events.z
lrwxrwxrwx 1 54 reduced.3a.events.z -> nas_bt_64.3a.events.z
lrwxrwxrwx 1 53 reduced.3.events.z -> nas_bt_64.3.events.z
lrwxrwxrwx 1 54 reduced.40.events.z -> nas_bt_64.40.events.z
lrwxrwxrwx 1 53 reduced.7.events.z -> nas_bt_64.7.events.z
lrwxrwxrwx 1 53 reduced.8.events.z -> nas_bt_64.8.events.z
lrwxrwxrwx 1 53 reduced.9.events.z -> nas_bt_64.9.events.z
lrwxrwxrwx 1 53 reduced.a.events.z -> nas_bt_64.a.events.z
lrwxrwxrwx 1 53 reduced.b.events.z -> nas_bt_64.b.events.z
lrwxrwxrwx 1 53 reduced.e.events.z -> nas_bt_64.e.events.z
lrwxrwxrwx 1 53 reduced.f.events.z -> nas_bt_64.f.events.z
-rw-r--r-- 1 136 reduced.otf

Figure 1: Listing of working directory after the clustering and shrinking steps.

6

Figure 2: Comparison of the Vampir vissualization of the original trace (top) and the reduced one (bot-
tom).

7

