Functions
polymake_documentation.h File Reference
#include <kernel/mod2.h>

Go to the source code of this file.

Functions

void init_polymake_help ()
 

Function Documentation

§ init_polymake_help()

void init_polymake_help ( )

Definition at line 22 of file polymake_documentation.cc.

23 {
24 
25  const char *polymake_banner =
26  "Welcome to polymake version\nCopyright (c) 1997-2015\nEwgenij Gawrilow, Michael Joswig (TU Darmstadt)\nhttp://www.polymake.org\n";
27 
28  PrintS(polymake_banner);
29 
30  const char* polymake_help =
31  "SHARED LIBRARY: polymake.so Interface to polymake (http://www.polymake.org)\nAUTHORS: Janko Boehm, boehm@mathematik.uni-kl.de\n Yue Ren, ren@mathematik.uni-kl.de\n\nOVERVIEW:\nPolymake is a tool to study the combinatorics \nand the geometry of convex polytopes and polyhedra. \nIt is also capable of dealing with simplicial complexes, \nmatroids, polyhedral fans, graphs, tropical objects.\nThe interface relies on the callable library functionality,\nby Ewgenij Gawrilow.\n\nREFERENCES:\nEwgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex polytopes. \nPolytopes—combinatorics and computation (Oberwolfach, 1997), 43–73, DMV Sem., 29, Birkhäuser, Basel, 2000. MR1785292 (2001f:52033)\n\nPROCEDURES:\n boundaryLatticePoints(polytope p);\n ehrhartPolynomialCoeff(polytope p);\n facetVertexLatticeDistances(polytope p);\n facetWidth(polytope p);\n facetWidths(polytope p);\n fVector(polytope p);\n gorensteinIndex(polytope p);\n gorensteinVector(polytope p);\n hilbertBasis(cone c);\n hStarVector(polytope p);\n hVector(polytope p);\n interiorLatticePoints(polytope p);\n isBounded(polytope p);\n isCanonical(polytope p);\n isCompressed(polytope p);\n isGorenstein(polytope p);\n isLatticeEmpty(polytope p);\n isNormal(polytope p);\n isReflexive(polytope p);\n isSmooth(polytope p);\n isVeryAmple(polytope p);\n latticeCodegree(polytope p);\n latticeDegree(polytope p);\n latticePoints(polytope p);\n latticeVolume(polytope p);\n maximalFace(polytope p, intvec v);\n maximalValue(polytope p, intvec v);\n minimalFace(polytope p, intvec v);\n minimalValue(polytope p, intvec v);\n minkowskiSum(polytope p, polytope q);\n nBoundaryLatticePoints(polytope p);\n nHilbertBasis(cone c);\n";
32 
33  module_help_main("polymake.so",polymake_help);
34 
35 
36  const char*isReflexive_help =
37  "USAGE: isReflexive(polytope p)\nRETURN: int, 1 if p is reflexive and 0 otherwise\nKEYWORDS: polytopes; polymake; reflexive\nEXAMPLE: example isReflexive shows an example\nexample\n{ \"EXAMPLE: \";\nintmat M[4][4]=1,1,0,0, 1,0,1,0, 1,0,0,1, 1,-1,-1,-1;\npolytope p = polytopeViaVertices(M);\nPolymake::isReflexive(p);\nintmat N[4][4]=1,2,0,0, 1,0,2,0, 1,0,0,2, 1,-2,-2,-2;\nq = polytopeViaVertices(N);\nPolymake::isReflexive(q);\n}\n";
38 
39  module_help_proc("polymake.so","isReflexive", isReflexive_help);
40 
41  const char* isBounded_help =
42  "USAGE: isBounded(polytope p)\nRETURN: int, 1 if p is bounded, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isBounded shows an example\n";
43 
44  module_help_proc("polymake.so","isBounded", isBounded_help);
45 
46  const char* isGorenstein_help =
47  "USAGE: isGorenstein(polytope p)\nRETURN: int, 1 if p is gorenstein (i.e. reflexive after dilatation and translation), 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isGorenstein shows an example\n";
48 
49  module_help_proc("polymake.so","isGorenstein", isGorenstein_help);
50 
51  const char* gorensteinIndex_help =
52  "USAGE: gorensteinIndex(polytope p)\nRETURN: int, n if p is reflexive after dilatation by n and translation, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example gorensteinIndex shows an example\n";
53 
54  module_help_proc("polymake.so","gorensteinIndex", gorensteinIndex_help);
55 
56  const char* gorensteinVector_help =
57  "USAGE: gorensteinVector(polytope p)\nRETURN: intvec, v if p is reflexive after dilatation and translation by v, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example gorensteinVector shows an example\n";
58 
59  module_help_proc("polymake.so","gorensteinVector", gorensteinVector_help);
60 
61  const char* isCanonical_help =
62  "USAGE: isCanonical(polytope p)\nRETURN: intvec, 1 if p has exactly one interior lattice point, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isCanonical shows an example\n";
63 
64  module_help_proc("polymake.so","isCanonical", isCanonical_help);
65 
66  const char* isTerminal_help =
67  "USAGE: isLatticeEmpty(polytope p)\nRETURN: int, 1 if p contains no lattice points other than the vertices, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isLatticeEmpty shows an example\n";
68 
69  module_help_proc("polymake.so","isTerminal", isTerminal_help);
70 
71  const char* latticeVolume_help =
72  "USAGE: latticeVolume(polytope p)\nRETURN: int, the normalized lattice volume of p, that is, (dim(P))! times the volume of P.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example latticeVolume shows an example\n";
73 
74  module_help_proc("polymake.so","latticeVolume", latticeVolume_help);
75 
76  const char* latticeDegree_help =
77  "USAGE: latticeDegree(polytope p)\nRETURN: int, the lattice degree of p, i.e. degree of the Ehrhart polynomial of P.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example latticeDegree shows an example\n";
78 
79  module_help_proc("polymake.so","latticeDegree", latticeDegree_help);
80 
81  const char* latticeCodegree_help =
82  "USAGE: latticeCodegree(polytope p)\nRETURN: int, getDimension(p)+1-latticeDegree(p), which is the smallest number k such that k*p has an interior latt\\nice point.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example latticeCodegree shows an example\n";
83 
84  module_help_proc("polymake.so","latticeCodegree", latticeCodegree_help);
85 
86  const char* ehrhartPolynomialCoeff_help =
87  "USAGE: ehrhartPolynomialCoeff(polytope p)\nRETURN: intvec, coefficients of the Ehrhart polynomial of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example ehrhartPolynomialCoeff shows an example\n";
88 
89  module_help_proc("polymake.so","ehrhartPolynomialCoeff", ehrhartPolynomialCoeff_help);
90 
91  const char* hStarVector_help =
92  "USAGE: hStarVector(polytope p)\nRETURN: intvec, h*-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example hStarVector shows an example\n";
93 
94  module_help_proc("polymake.so","hStarVector", hStarVector_help);
95 
96  const char* hVector_help =
97  "USAGE: hVector(polytope p)\nRETURN: intvec, h-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example hVector shows an example\n";
98 
99  module_help_proc("polymake.so","hVector", hVector_help);
100 
101  const char* fVector_help =
102  "USAGE: fVector(polytope p)\nRETURN: intvec, the f-vector of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example fVector shows an example\n";
103 
104  module_help_proc("polymake.so","fVector", fVector_help);
105 
106  const char* isNormal_help =
107  "USAGE: isNormal(polytope p)\nRETURN: int, 1 if p is normal, i.e. the projective toric variety defined by p is projectively normal, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isNormal shows an example\n";
108 
109  module_help_proc("polymake.so","isNormal", isNormal_help);
110 
111  const char* facetWidths_help =
112  "USAGE: facetWidths(polytope p)\nRETURN: intvec, vector with the integral widths of p with respect to all facet normals.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example facetWidths shows an example\n";
113 
114  module_help_proc("polymake.so","facetWidths", facetWidths_help);
115 
116  const char* facetWidth_help =
117  "USAGE: facetWidth(polytope p)\nRETURN: int, maximum of the integral widths of p over all facet normals.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example facetWidth shows an example\n";
118 
119  module_help_proc("polymake.so","facetWidth", facetWidth_help);
120 
121  const char* facetVertexLatticeDistances_help =
122  "USAGE: facetVertexLatticeDistances(polytope p)\nRETURN: intmat, matrix of lattice distances between vertices (columns) and facets (rows).\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example facetVertexLatticeDistances shows an example\n";
123 
124  module_help_proc("polymake.so","facetVertexLatticeDistances", facetVertexLatticeDistances_help);
125 
126  const char* isCompressed_help =
127  "USAGE: isCompressed(polytope p)\nRETURN: int, 1 if facetWidth(p)=1, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isCompressed shows an example\n";
128 
129  module_help_proc("polymake.so","isCompressed", isCompressed_help);
130 
131  const char* isSmooth_help =
132  "USAGE: isSmooth(polytope p)\n isSmooth(cone c)\n isSmooth(fan F)\nRETURN: int, 1 if p, c, or F is smooth, 0 otherwise.\nKEYWORDS: polytopes; cones; fans; polymake;\nEXAMPLE: example isSmooth shows an example\n";
133 
134  module_help_proc("polymake.so","isSmooth", isSmooth_help);
135 
136  const char* isVeryAmple_help =
137  "USAGE: isVeryAmple(polytope p)\nRETURN: int, 1 if p is very ample, 0 otherwise.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example isVeryAmple shows an example\n";
138 
139  module_help_proc("polymake.so","isVeryAmple", isVeryAmple_help);
140 
141  const char* latticePoints_help =
142  "USAGE: latticePoints(polytope p)\nRETURN: intmat, matrix whose rows are the lattice points of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example latticePoints shows an example\n";
143 
144  module_help_proc("polymake.so","latticePoints", latticePoints_help);
145 
146  const char* nLatticePoints_help =
147  "USAGE: nLatticePoints(polytope p)\nRETURN: int, number of lattice points of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example nLatticePoints shows an example\n";
148 
149  module_help_proc("polymake.so","nLatticePoints", nLatticePoints_help);
150 
151  const char* interiorLatticePoints_help =
152  "USAGE: interiorLatticePoints(polytope p)\nRETURN: intmat, an matrix whose rows are the lattice points in the relative interior of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example interiorLatticePoints shows an example\n";
153 
154  module_help_proc("polymake.so","interiorLatticePoints", interiorLatticePoints_help);
155 
156  const char* nInteriorLatticePoints_help =
157  "USAGE: nInteriorLatticePoints(polytope p)\nRETURN: int, number of lattice points in the relative interior of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example nInteriorLatticePoints shows an example\n";
158 
159  module_help_proc("polymake.so","nInteriorLatticePoints", nInteriorLatticePoints_help);
160 
161  const char* boundaryLatticePoints_help =
162  "USAGE: boundaryLatticePoints(polytope p)\nRETURN: intmat, matrix whose rows are the lattice points in the relative boundary of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example boundaryLatticePoints shows an example\n";
163 
164  module_help_proc("polymake.so","boundaryLatticePoints", boundaryLatticePoints_help);
165 
166  const char* nBoundaryLatticePoints_help =
167  "USAGE: nBoundaryLatticePoints(polytope p)\nRETURN: int, number of lattice points in the relative boundary of p.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example nBoundaryLatticePoints shows an example\n";
168 
169  module_help_proc("polymake.so","nBoundaryLatticePoints", nBoundaryLatticePoints_help);
170 
171  const char* hilbertBasis_help =
172  "USAGE: hilbertBasis(cone c)\nRETURN: intmat, Hilbert basis of the semigroup of c.\nKEYWORDS: cones; polymake;\nEXAMPLE: example hilbertBasis shows an example\n";
173 
174  module_help_proc("polymake.so","hilbertBasis", hilbertBasis_help);
175 
176  const char* nHilbertBasis_help =
177  "USAGE: nHilbertBasis(cone c)\nRETURN: int, size of the Hilbert basis of the semigroup of c.\nKEYWORDS: cones; polymake;\nEXAMPLE: example nHilbertBasis shows an example\n";
178 
179  module_help_proc("polymake.so","nHilbertBasis", nHilbertBasis_help);
180 
181  const char* minkowskiSum_help =
182  "USAGE: minkowskiSum(polytope p, polytope q)\nRETURN: polytope, Minkowski sum of p and q.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example minkowskiSum shows an example\n";
183 
184  module_help_proc("polymake.so","minkowskiSum", minkowskiSum_help);
185 
186  const char* minimalValue_help =
187  "USAGE: minimalValue(polytope p, intvec v)\nRETURN: int, the minimal value of the linear form v on p.\n The first coordinate of v corresponds to a shift of the\n minimal value since p is considered as a polytope\n in the plane (first coordinate) = 1.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example minimalValue shows an example\n";
188 
189  module_help_proc("polymake.so","minimalValue", minimalValue_help);
190 
191  const char* maximalValue_help =
192  "USAGE: maximalValue(polytope p, intvec v)\nRETURN: int, maximal value of the linear form v on p.\n The first coordinate of v corresponds to a shift of the\n maximal value since p is considered as a polytope\n in the plane (first coordinate) = 1.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example maximalValue shows an example\n";
193 
194  module_help_proc("polymake.so","maximalValue", maximalValue_help);
195 
196  const char* minimalFace_help =
197  "USAGE: minimalFace(polytope p, intvec v)\nRETURN: intmat, vertices of the face of p on which the linear form v\n is minimal.\n The first coordinate of v corresponds to a shift of the\n minimal value since p is considered as a polytope\n in the plane (first coordinate) = 1. Hence\n the minimal face is independent of the first coordinate of v.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example minimalFace shows an example\n";
198 
199  module_help_proc("polymake.so","minimalFace", minimalFace_help);
200 
201  const char* maximalFace_help =
202  "USAGE: maximalFace(polytope p, intvec v)\nRETURN: intmat, vertices of the face of p on which the linear form v\n is maximal.\n The first coordinate of v corresponds to a shift of the\n maximal value since p is considered as a polytope\n in the plane (first coordinate) = 1. Hence\n the maximal face is independent of the first coordinate of v.\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example maximalFace shows an example\n";
203 
204  module_help_proc("polymake.so","maximalFace", maximalFace_help);
205 
206  const char* visual_help =
207  "USAGE: visual(polytope p)\n visual(fan F)\nRETURN: none, draws the polytope p or fan F using jreality.\nKEYWORDS: polytopes; polymake; visualization;\nEXAMPLE: example visual shows an example\n";
208 
209  module_help_proc("polymake.so","visual", visual_help);
210 
211  const char* normalFan_help =
212  "USAGE: normalFan(polytope p)\nRETURN: fan,\nKEYWORDS: polytopes; polymake; visualization;\nEXAMPLE: example visual shows an example\n";
213 
214  module_help_proc("polymake.so","normalFan", normalFan_help);
215 
216  const char* vertexAdjacencyGraph_help =
217  "USAGE: vertexAdjacencyGraph(polytope p)\nRETURN: list,\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example visual shows an example\n";
218 
219  module_help_proc("polymake.so","vertexAdjacencyGraph", normalFan_help);
220 
221  const char* vertexEdgeGraph_help =
222  "USAGE: vertexEdgeGraph(polytope p)\nRETURN: list,\nKEYWORDS: polytopes; polymake;\nEXAMPLE: example visual shows an example\n";
223 
224  module_help_proc("polymake.so","vertexEdgeGraph", normalFan_help);
225 
226 }
void module_help_proc(const char *newlib, const char *p, const char *help)
Definition: iplib.cc:1123
void PrintS(const char *s)
Definition: reporter.cc:284
void module_help_main(const char *newlib, const char *help)
Definition: iplib.cc:1108