esda.Moran_Local_Rate

class esda.Moran_Local_Rate(e, b, w, adjusted=True, transformation='r', permutations=999, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0)[source]

Adjusted Local Moran Statistics for Rate Variables [].

Parameters
earray

(n,1), an event variable across n spatial units

barray

(n,1), a population-at-risk variable across n spatial units

wW

weight instance assumed to be aligned with y

adjustedbool

whether or not local Moran statistics need to be adjusted for rate variable

transformation{‘R’, ‘B’, ‘D’, ‘U’, ‘V’}

weights transformation, default is row-standardized “r”. Other options include “B”: binary, “D”: doubly-standardized, “U”: untransformed (general weights), “V”: variance-stabilizing.

permutationsint

number of random permutations for calculation of pseudo p_values

geoda_quadsbool

(default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

njobsint

number of workers to use to compute the local statistic.

keep_simulationsBoolean

(default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved

seedNone/int

Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances.

island_weight: float

value to use as a weight for the “fake” neighbor for every island. If numpy.nan, will propagate to the final local statistic depending on the stat_func. If 0, then the lag is always zero for islands.

Examples

>>> import libpysal
>>> import numpy as np
>>> np.random.seed(10)
>>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read()
>>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf"))
>>> e = np.array(f.by_col('SID79'))
>>> b = np.array(f.by_col('BIR79'))
>>> from esda.moran import Moran_Local_Rate
>>> lm = Moran_Local_Rate(e, b, w, transformation = "r", permutations = 99)
>>> lm.q[:10]
array([2, 4, 3, 1, 2, 1, 1, 4, 2, 4])
>>> lm = Moran_Local_Rate(e, b, w,  transformation = "r",  permutations = 99,  geoda_quads=True)
>>> lm.q[:10]
array([3, 4, 2, 1, 3, 1, 1, 4, 3, 4])

Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures

Attributes
yarray

rate variables computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates

wW

original w object

permutationsint

number of random permutations for calculation of pseudo p_values

Isfloat

value of Local Moran’s Ii

qarray

(if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

simarray

(if permutations>0) vector of I values for permuted samples

p_simarray

(if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated Iis. It is either extremely high or extremely low in the distribution of simulated Is

EI_simfloat

(if permutations>0) average value of I from permutations

VI_simfloat

(if permutations>0) variance of I from permutations

seI_simfloat

(if permutations>0) standard deviation of I under permutations.

z_simfloat

(if permutations>0) standardized I based on permutations

p_z_simfloat

(if permutations>0) p-value based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2

__init__(e, b, w, adjusted=True, transformation='r', permutations=999, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0)[source]

Methods

__init__(e, b, w[, adjusted, ...])

by_col(df, events, populations[, w, ...])

Function to compute a Moran_Local_Rate statistic on a dataframe