Statistical Functions Part Three
\
CONFIDENCE function\
CONFIDENCE
Returns the (1-alpha) confidence interval for a normal distribution.
CONFIDENCE(Alpha; STDEV; Size)
\Alpha\ is the level of the confidence interval.
\STDEV\ is the standard deviation for the total population.
\Size\ is the size of the total population.
=CONFIDENCE(0.05; 1.5; 100) gives 0.29.
\
CONFIDENCE function\
CONFIDENCE
Returns the (1-alpha) confidence interval for a Student's t distribution.
CONFIDENCE(Alpha; STDEV; Size)
\Alpha\ is the level of the confidence interval.
\STDEV\ is the standard deviation for the total population.
\Size\ is the size of the total population.
=CONFIDENCE(0.05; 1.5; 100) gives 0.29.
This function is available since LibreOffice 4.2.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.CONFIDENCE.T
\
CONFIDENCE function\
CONFIDENCE.NORM
Returns the (1-alpha) confidence interval for a normal distribution.
CONFIDENCE(Alpha; STDEV; Size)
\Alpha\ is the level of the confidence interval.
\STDEV\ is the standard deviation for the total population.
\Size\ is the size of the total population.
=CONFIDENCE(0.05; 1.5; 100) gives 0.29.
This function is available since LibreOffice 4.2.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.CONFIDENCE.NORM
\
CORREL function\\
coefficient of correlation\
CORREL
Returns the correlation coefficient between two data sets.
CORREL(Data_1; Data_2)
\Data_1\ is the first data set.
\Data_2\ is the second data set.
=CORREL(A1:A50; B1:B50) calculates the correlation coefficient as a measure of the linear correlation of the two data sets.
\
COVAR function\
COVAR
Returns the covariance of the product of paired deviations.
COVAR(Data_1; Data_2)
\Data_1\ is the first data set.
\Data_2\ is the second data set.
=COVAR(A1:A30; B1:B30)
\
COVAR function\
COVARIANCE.P
Returns the covariance of the product of paired deviations, for the entire population.
COVARIANCE.P(Data1; Data2)
\Data_1\ is the first data set.
\Data_2\ is the second data set.
=COVAR(A1:A30; B1:B30)
This function is available since LibreOffice 4.2.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.COVARIANCE.P
\
COVAR function\
COVARIANCE.S
Returns the covariance of the product of paired deviations, for a sample of the population.
COVARIANCE.S(Data1; Data2)
\Data_1\ is the first data set.
\Data_2\ is the second data set.
=COVAR(A1:A30; B1:B30)
This function is available since LibreOffice 4.2.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.COVARIANCE.S
\
CRITBINOM function\
CRITBINOM
Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.
CRITBINOM(Trials; SP; Alpha)
\Trials\ is the total number of trials.
\SP\ is the probability of success for one trial.
\Alpha\ is the threshold probability to be reached or exceeded.
=CRITBINOM(100; 0.5; 0.1) yields 44.
\
KURT function\
KURT
Returns the kurtosis of a data set (at least 4 values required).
KURT(Number 1 [; Number 2 [; … [; Number 255]]])
Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.
The parameters should specify at least four values.
This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.
=KURT(A1;A2;A3;A4;A5;A6)
\
LARGE function\
LARGE
Returns the Rank_c-th largest value in a data set.
This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)
LARGE(Data; Rank_c)
\Data\ is the cell range of data.
RankC is the ranking of the value. If RankC is an array, the function becomes an array function.
This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.
=LARGE(A1:C50;2) gives the second largest value in A1:C50.
=LARGE(A1:C50;B1:B5) entered as an array function gives an array of the c-th largest value in A1:C50 with ranks defined in B1:B5.
\
LOGINV function\\
inverse of lognormal distribution\
LOGINV
Returns the inverse of the lognormal distribution.
LOGINV(Number [; Mean [; StDev]])
Number (required) is the probability value for which the inverse standard logarithmic distribution is to be calculated.
Mean (optional) is the arithmetic mean of the standard logarithmic distribution (defaults to 0 if omitted).
StDev (optional) is the standard deviation of the standard logarithmic distribution (defaults to 1 if omitted).
=LOGINV(0.05; 0; 1) returns 0.19.
\
LOGINV function\\
inverse of lognormal distribution\
LOGNORMDIST
Returns the inverse of the lognormal distribution.
This function is identical to LOGINV and was introduced for interoperability with other office suites.
LOGNORM.INV(Number ; Mean ; StDev)
\Number\ is the probability value for which the inverse standard logarithmic distribution is to be calculated.
\Mean\ is the arithmetic mean of the standard logarithmic distribution.
StDev (required) is the standard deviation of the standard logarithmic distribution.
=LOGINV(0.05; 0; 1) returns 0.19.
This function is available since LibreOffice 4.3.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.LOGNORM.INV
\
NEGBINOMDIST function\\
negative binomial distribution\
LOGNORMDIST
Returns the values of a lognormal distribution.
LOGNORMDIST(Number [; Mean [; StDev [; Cumulative]]])
\Number\ is the probability value for which the standard logarithmic distribution is to be calculated.
\Mean\ is the mean value of the standard logarithmic distribution.
\STDEV\ is the standard deviation of the standard logarithmic distribution.
\C\ = 0 calculates the density function \C\ = 1 the distribution.
=LOGNORMDIST(0.1; 0; 1) returns 0.01.
\
NEGBINOMDIST function\\
negative binomial distribution\
LOGNORMDIST
Returns the values of a lognormal distribution.
LOGNORMDIST(Number; Mean; STDEV)
\Number\ is the probability value for which the standard logarithmic distribution is to be calculated.
\Mean\ is the mean value of the standard logarithmic distribution.
\STDEV\ is the standard deviation of the standard logarithmic distribution.
\C\ = 0 calculates the density function \C\ = 1 the distribution.
=LOGNORMDIST(0.1; 0; 1) returns 0.01.
This function is available since LibreOffice 4.3.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
COM.MICROSOFT.LOGNORM.DIST
\
SMALL function\
SMALL
Returns the Rank_c-th smallest value in a data set.
This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)
SMALL(Data; Rank_c)
\Data\ is the cell range of data.
RankC is the rank of the value. If RankC is an array, the function becomes an array function.
This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.
=SMALL(A1:C50;2) gives the second smallest value in A1:C50.
=SMALL(A1:C50;B1:B5) entered as an array function gives an array of the c-th smallest value in A1:C50 with ranks defined in B1:B5.